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FOREWORD

Dear friends and colleagues,

During the last 4 years the process of reviewing statutes and bylaws of IAG has deeply involved
also the IAG Services and, among them, those Services which are related to the determination of the
gravity field, like BGI, IGeS, ICeT, GFZ and NIMA with these already existing centers in mind and with
the contribution of new Centers, namely the 2nd IGeS Center at NIMA (St. Louis) and the new
International Centre of Global Earth Models (ICGEM) at GFZ we have created a new unified Service for
the Gravity Field namely the International Gravity Field Service (IGFS).

Lately, from the Sapporo General Assembly, a new Center is being structured and is in the process
of entering into IGFS; namely the DTM Centre (CeDiT) at the Montfort University (U.K.)

As part of this effort of unification and, continuing a period of good cooperation between BGI and
IGeS, we have decided to start merging the two bulletins in one publication; the brand new "Newton’s
Bulletin" (N.B.).

Just to remind you of the preceding rules and to report the new ones, let us confirm that the N.B.
will be essentially composed of two parts, one where we publish reviewed papers, in the spirit of IGeS
Bulletin, namely the review concerns the correctness and uptodateness of the approach and not its novelty
in theoretical matters, and one part where the "information" concerning new data set, the internal life of
the centers and international events, gravity field related, is reported.

The mode of publication will be mixed; basically the N.B. will be put on-line and built as soon as
the material arrives in an appropriate form.

In addition a certain number of CD will be published and distributed on the basis of a request
covering the mail expenses; finally a small number of paper journal will be produced for libraries and
agencies/individual scientists from areas of the world where internet connection is difficult.

As for the addresses where to send the material, the editorial board is done purposely half by BGI
and half by IGeS and you can address whatever center you prefer exactly as you would have done before.
The Editorial Board will then take care of unifying and homogeneizing the material, also concerning the
reviewing process when applicable.

Finally let me recall that the N.B. in electronic form will be readable at the address "bgi.cnes.fr" or
"www.iges.polimi.it" from which it can be downloaded too.

With that let me wish to all geodesists the best wishes for Happy New Year and good luck to the
new born Newton’s Bulletin.

Jean-Pierre Barriot (BGI Director) and Fernando Sansò (IgeS Director).

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



Newton's Bulletin N. 1

Summary

Foreword
(J.P. Barriot, F. Sansò) Page    1

SECTION I - "Reviewed Papers"
BGI Papers:

Ajustement des réseaux gravimétriques
(J.P. Barriot, M. Sarrailh) Page     2

Proposal for the precise definition of mean valuesof gravity field quantities
(C.C. Tscherning) Page     8

Abnormal temperature response of a Lacoste-Romberg gravimeter and procedures
for tropical utilisation
(O.K. Nwofor and T.C. Chineke) Page    11

Preliminary results in the achievement of the new gravity system of Republic
of Moldova
(Besutiu L., Neaga V., Nicolescu A., Lorinczi J., Ilies I., Besutiu G.) Page   28

IGeS Papers:

Surface modeling for GPS-levelling geoid determination
(M. Soycan, Msc. A. Soycan) Page   41

A Comparison of the classical and recent formulae of handling the effects
of close and distant topographic masses in gravimetric geoid computations
(H. Nahavandchi) Page  52

Quasi-geoid BG03 computation in Belgium
(R. Barzaghi, A. Borghi, B. Ducarme, M. Everaerts) Page  75

II Section: "Communications and News"

Geoid and Ocean Circulation in the North Atlantic (GOCINA)
(P. Knudsen, R. Forsberg, O. Andersen, D. Solheim, R. Hipkin, K. Haines,
J. Johannessen, and F. Hernandez)

Page  89

The New 'International Centre for Global Gravity Field Models (ICGG)'
at GFZ Potsdam
(P. Schwintzer, F. Barthelmes, W. Köhler, H. Pflug) Page   94

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



SECTION I - "Reviewed Papers"

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



ADJUSTMENT OF GRAVIMETRIC NETWORKS*

Jean-Pierre Barriot and Michel Sarrailh

Bureau Gravimétrique International, Toulouse, France

* Lecture given by M. Sarrailh during the 3rd North African Workshop on the Unification of
Geodetic Reference Systems – Rabat, October 16-17, 2003

Abstract: We summarize the current knowledge about the adjustment of gravimetric
networks in terms of the pseudo-inverse theory of least-squares processes, and give the link
with the so-called free adjustment often used in practice.

1 – INTRODUCTION

Let us consider the system

G p d
~ ~
= (1)

where:

- the vector d
~

 represents the data point values (number m),

- the vector p
~

 represents the parameters (number n),

- the matrix G is the design matrix linking the parameters p
~

 to the data d
~

.

If G  is of full rank (i.e. the problem is fully constrained), then, for the overdetermined case (more

observation equations than unknowns), one and only one solution exists in the least squares sense, and is

given by

p G G G dT T*

~ ~
= ( )−1

(2)

If G is not of full rank, as it is always the case for networks, then G GT( )−1
does not exist. This signifies that

there are several solutions p
~

, each one verifying

G G p G dT T( ) =
~ ~

(3)

Then we have else:

- to pick up a particular solution, from an a priori rule,

- or to modify the system (1), in order to restore unicity

G p d
~ ~
=  → ′ ′ = ′G p d

~ ~
(4)

i.e. with a design matrix G' of full rank.
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2 – CHOICE OF A PARTICULAR SOLUTION

If several solutions p
~

 to Eq. (3) exist, a physically sound choice is to select the one that exhibits the lowest

norm, (i.e. p
~

 minimum). This solution is given by the generalized inverse of G, which is the unique matrix

G+ verifying

G G G G+ =
G G G G+ + +=

G G G G
T+ +( ) =

G G G G
T+ +( ) =

On practical grounds, G+  is computed through the so-called SVD (Singular Value Decomposition)

algorithm, from the expansion
G U V T= Λ

where U U U U IT T
m= = U m m×

V V V V IT T
n= = V n n×

Λ m n×
and

Λ =
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There are q non-zero values λi . The number q is the rank of matrix G, and the rank defect of G is then n – q.

We have G V UT+ += Λ , with
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(6)

Furthermore, if d
~

is associated with the covariance matrix C Id d= σ 2 , then

C G I G G G
p d

T

d
T

*

~

= ( ) ( ) = ( )+ + +
σ σ2 2

and Trace σ d
TG G2 ( )( )+  is minimal over the whole set of all possible solutions p*

~
 of Eq. (3). This is an

another nice property.

In principle, the SVD algorithm permits to solve ALL least squares problems, and is part of all common

least-squares software packages. But it is costly in terms of computer space and execution time, and

sometimes its precision is not guaranteed for the determination of small singular values and corresponding

eigenvectors. For overdetermined and underconstrained systems like the gravimetric or altimetric network
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problem there is an alternative technique called “free network” which consists in writing Eq. (3) as (see

annex)

G G p G dT T+( ) =Φ
~ ~

with Φ p
~
= 0 , in such a way that G GT +( )−Φ

1
 exists, and that p G d G G G dT T

~

*

~ ~
= = +( )+ −

Φ
1

(7)

The immense advantage is that the use of a standard Cholesky algorithm to compute p
~

*  and its associated

covariance is now allowed. Of course, the disadvantage is that we have to construct Φ .

A particular value of p
~

* can be also computed through iterative processes, like

p G G I G d p

p A A I G d

p p

n T T n

T T

~

( )

~ ~

~

( )

~

~

*

~

,

,

.

+ − ( )

−

∞( )

= +( ) +





= +( )
=

1 2 1 2

1 2 1

λ λ

λwith 

and,  in fine,

(8)

But there is no longer a direct access to the covariance matrix…

If this covariance matrix is absolutely needed, G+  can be iteratively built through

X X I G Xr r r+( ) ( ) ( )= −( )1 2 (9)

with X Go T( ) = α 0 2 1< <α λ/ ,

where λ1 are the largest singular values of G GT  (the convergence can be assessed by

G X G Gr( ) − → 0).

A last possibility to pick up a particular solution of Eq. (3) is to split the normal matrix as

G G M NT = −  with M−1 well defined.

This splitting allows us to write the iteration

p M N p M G dn n T

~ ~

( ) − −( ) −= +1 1 1 (10)

starting from a given p o

~

( ).

This technique can be very cheap to implement, for example by selecting

M diag G GT= ( ) .

The convergence of the method depends on the spectral properties of M N−1  and on the particular value of

the initial vector p o

~

( ).

The disadvantage is that, albeit if p
~

∞( )  by construction strictly verifies Eq. (3), the non-unicity of the solution

could be synonymous with long wavelength distortions in the network (otherwise perfectly adjusted).
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3 – MODIFICATION OF THE INITIAL SYSTEM

There are two possibilities:

3.1. to complement the initial system G p d
~ ~
=  with K p

~ ~
= l,

in order to obtain the form 
G

K
p

d
G p d





=













= ′ ′ = ′

~

~

~
~ ~l

,

where G' is now of full rank.
The normal system has then a unique solution p

~

' * given by

p G G G dT T

~ ~
' * '= ′ ′( ) ′

−1

that can be rewritten as

p G G K K G d KT T T T

~ ~ ~
' * = +( ) +( )−1

l

If furthermore we assume that l
~ ~
= 0 , we obtain

p G G K K G dT T T

~ ~
' * = +( )−1

(11)

Let us note the formal analogy with Eq. (7), which corresponds to p p
~ ~ min

' * *=

The additional assumption K I= λ  with λ > 0  is of courant use, and signifies that a solution p
~
' *close to

zero is sought. That corresponds to seek a value of p
~
' * close to zero, and that more especially as λ is large.

3.2. –to complement the normal system, the simplest form being

G G
G G u

u
T

T T

→










0

~

,

which is equivalent to solve the system

G G u

u

p G dT T T

0
~

~

~

~

~
























=










λ µ (12)

or equivalently to minimize G p d
~ ~
−  under the constraint u p

~ ~ ~
− =µ 0

This is the case when some data points on the network are frozen, i.e. if we suppose that the

corresponding gravimetric values are perfectly known on these points.
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ANNEX – NOTION OF FREE NETWORK

From Eq. (5), one can see that

G G V VT q n q

q

n q q n q n q

T=
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− − −
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0

0 0

O ,

, ,

(13)

The idea is to complete G GT  in such a way that

G G V VT

completed

q

q

n
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Therefore, ( G GT )completed exists. This is equivalent to writing

G G G GT

completed

T( ) = +Φ

where Φ =
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(15)

It is easy to see that G Φ = 0 i.e. G GT Φ = 0. Eq. (15) suggest that Φ can be put on the form Φ = C CT ,
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where

C U
b
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with U  verifying U U U U IT T
m= =
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 the least norm solution.

We have also Φ Φp p** *= = 0.
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Proposal for the precise definition of mean values
of gravity field quantities

by

C.C. Tscherning

Department of Geophysics,
University of Copenhagen.

Juliane Maries Vej 30,
DK-2100 Copenhagen Ø., Denmark

e-mail: cct@gfy.ku.dk

1. Introduction.

Some of the products of the GOCE mission are mean values of gravity anomalies and geoid heights. In

order to avoid ambiguities a precise definition of these quantities is needed. First  mean values are

defined in a general manner, so it can be used for any gravity field related quantity, and finally the

definition of specific GOCE mean values are proposed.

2. Mathematical definition of a mean value.

A mathematical definition of a mean value is the mean of values of a function or of a functional

applied on a function,
f R Rn:Ω⊆ →

The mean must be taken over a continous or discrete, bounded subset of Ω . The subset must have

dimension less than or equal to n, which for the gravity field are 4 for time dependent quantities and

otherwise 3. See for example Heiskanen and Moritz (1967, eq. (7-76)).

Examples are for

1D:  discrete or contineous mean along a flight, ship  or satellite track bounded in time or space.

2D: - discrete or contineous mean over a 2D surface bounded by parallels and meridians having a

fixed ellipsoidal height (equi-angular or equal-area mean values).

- mean over an area bounded by a closed curve, such as over a lake.

3D: discrete or contineous mean over a volume defined by the coordinates of the corners of a convex

area such as a sphere or a box.

DMA/NIMA 1o mean gravity anomalies are for example defined as the mean of 6x6 values in an equi-

angular area (see DMAAC, 1973). The associated altitude is the mean topographic height.
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3. Definition of a gravimetric quantity.

Let

• W be the gravity potential of the Earth,

• Φ the centrifugal potential

• U is the Somigliana-Pizetti normal potential of a specific reference system

•  V N  a linear combination of N harmonic functions such as spherical or ellipsoidal harmonics to

degree (and order) ( )N +1 2
 without the centrifugal potential, and

• TN = VN +Φ  - U

• T=W-U

We do not require the zero and first order harmonics of T or TN to be zero.  VN may also be a linear

combination of potentials of point-masses or of covariance functions used in Least-Squares

Collocation.

A gravimetric quantity is here

1) a functional applied on W, VN , T or TN , including or excluding effects of the atmosphere and the
tides. Normal gravity γ  in a point Q will be the magnitude of the gradient of U in the point.

2) an observed quantity like (a) the potential W(P) in a specific point P in a given datum, (b) g(P) the

magnitude of the gravity  vector in a point P, in a given reference system (one for P and one for g),

(c) the second order radial derivative of W, Wrr(P) in a given point P. The altitude associated with

P is always the ellipsoidal height.

3) an anomalous quantity, i.e. a functional applied on T or TN .

For GOCE products anomalous quantities will be derived from TN =VN  + Φ - U.

A GOCE gravity anomaly ∆g N is then the difference between the norm of the gradient γ N
computed

from UN = VN + Φ and normal gravityγ in a point Q on the same ellipsoidal normal, and where UN

(Q)= W(P). The linearized expression for the gravity anomaly will be for example,

∆g
T

n h
TN

N N
N N= − −

∂
∂

∂γ
∂

γ/

The derivative must be computed in the direction of the vertical as defined by UN . The height anomaly
ςN is the distance along the ellipsoidal normal between the points P and Q. Note that P is on or outside

the surface of the Earth, while Q may be inside.

The geoid height is obtained from the height anomaly at the surface of the Earth using a fixed

conversion formula, such as the one which include the Bouger anomaly, see Heiskanen and Moritz,

1967, eq. (8.103).

A height anomaly may be computed from observed quantities at the surface of the Earth, e.g. from

normal heights and ellipsoidal heights obtained using GPS. In contrast to geoid heights they do not

include any hypothesis about the internal mass-distribution of the Earth. Such hypotheses are different

from country to country, mainly due to different mass density values used to compute the Bouguer

anomaly.
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4. Computational considerations

Using the proper definitions of GOCE height anomalies and gravity anomalies it will not be difficult

to evaluate these quantities at specific points, and subsequently compute a mean value. However in

order to evaluate the quantities they must be compared with observed quantities. This is more

problematic. Existing mean gravity anomalies have not been computed using procedures

corresponding to the definitions above, see e.g. Wilcox(1974), Jones(1980).

First of all different procedures have been used to reduce the observed anomalies to a surface of

constant height. Furthermore this height is generally taken as the mean topographic height, i.e. the

anomalies are partly defined inside the masses. This should be avoided. But this means that mean

gravity anomalies to be used for GOCE calibration must be recomputed. However, it is not the

purpose of this note to discuss this aspect. But what is important is that the procedures must be rather

easy to implement on a computer, and that the procedure adopted corresponds to the procedures to be

used for the computation of GOCE height or gravity anomalies.

4. Conclusion.  Proposed definitions of mean values

For computational use it is important that TN (as determined by GOCE) is harmonic outside the

surface of the Earth, i.e. it should not include any tidal or atmospheric effects.

Mean values of GOCE gravity anomalies and height anomalies should be defined as weighted sums of

quantities associated with points which all are on or outside the surface of the Earth. However mean

values in general may be computed from any of the 4 types of quantities discussed in section 2.

For 2D means, the mean values should be over surfaces with constant ellipsoidal heights. Area means

are "equi-angular" means. A standard such as a 5x5 or 6x6 point set should be selected in accordance

with NIMA definitions.

If geoid mean values have to be computed, the basis is height anomalies at the surface of the Earth.

The corresponding geoid heights must then be computed using the conversion formula used by the

country in which the block resides. For blocks overlapping two countries which use different

hypothesis, they should not be computed. Note, that the conversion generally require that also the

Bouguer anomaly is known for the points used to compute the mean value.
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Abnormal temperature response of a Lacoste-Romberg gravimeter and
procedures for tropical utilisation

O.K. Nwofor and T.C. Chineke

Department of Physics

Imo State University

P.M.B 2000 Owerri

Nigeria

Abstract.  A Lacoste-Romberg gravimeter was observed to exhibit abnormal drifts of varying character and

magnitude when employed for field surveys under the Nigerian tropical heat. The gravimeter was therefore

observed under specific instrumental and climatic conditions at a fixed location in Jos, Nigeria, in order to

ascertain the nature of the abnormal drifts especially those influenced by temperature changes around the

instrument. We found that temperature conditions affected both the drift and the sensitivity in such a manner

that suggested that the temperature compensation of the instrument was inadequate possibly due to aging.

The effect was the introduction of errors ranging between 10-3 mGals  to 10-2 mGals. Given the cost of new

instruments and the problems often associated with the repair of aging ones, we recommend that more

compensation must be sought in addition to a measurement procedure that would enhance meter stability in

order to improve the reliability of aging gravimeters in the tropics.

KEYWORDS-Lacoste-Romberg, Gravimetric, Drift

 1    INTRODUCTION

Since the 1950’s, two designs of portable gravity meters for use on land have dominated the field. The

Worden gravimeter first developed in 1947 and the Lacoste-Romberg (LCR) gravimeter originally designed

by Lacoste at about 1934, and in its  present form with a metal sensor in 1945 (Huggil 1990, Torge 1989). In

the 1960’s and 70’s, nearly all the major gravimetric surveys in Nigeria were accomplished with the aid of

Worden gravimeters (Osazuwa and Ajakaiye (1982)).

Beginning from the 1980’s however, the LCR gravimeters have gained popularity, accounting for

over 80% of gravity surveys. The choice for the LCR instrument is largely due to its availability, portability,

and cost-effectiveness in data acquisition. Although the instrument has been used primarily in Nigeria for

monitoring groundwater resources and tectonic trends (Ojo, 1992), it has also been used severally for

delineating basins prior to seismic search for petroleum. The continued use of this very versatile instrument

especially in this seismic era will however depend on the reliability of its results. Technical improvements

towards reducing environmental effects have been reported for the more recent instruments as can easily be

seen from http://www.lacosteromberg.com

However, the problem of cost and availability of new instruments, and the maintenance of faulty ones in

most tropical countries such as Nigeria, make the routine assessments of the performance of available ones,

indispensable.

 Although the LCR gravimeter has a data range of 7000 mGals and data resolution of 0.005 mGals,

one often discovers that as a consequence of wrong usage, aging or mechanical faults, the instrument

responds to several “error conditions”, which in turn, result in abnormal drifts. The result is a reduction in

accuracies. In the tropical environment as one  finds in Nigeria, the error conditions are found to be mostly
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associated with temperature changes. When the error input patterns and  corresponding drift patterns can be

foretold, the use can be twofold. First, it  is possible to  seek for more compensation for the effects (when the

conditions cannot be avoided), and secondly one can construct a reproducible instrument-specific reactions

for the basis of computational corrections.

Kangiessar (1982) has categorized errors in the use of the LCR gravimeter into systematic and

random components. The systematic errors are “independent” of externally interfering factors. These include

those from pointer reading and leveling. Using the optical reading method, the reading error is between 0.003

mGal and 0.005 mGal. Levelling errors depend on the calibration of the levels and on the precision in the

process of centering the level bubbles, with a value below 0.002 mGal. Random components of the errors are

caused by poor meter handling and atmospheric conditions of temperature, pressure, magnetic field

variations, and others. Although ordinarily, enough insulation and compensations are provided for the

atmospheric effects, especially in the more recent instruments, these are nonetheless inadequate, more so for

an old meter. The buoyancy compensation and magnetic shielding for instance are easily lost due to shocks

and vibrations, and the thermostat can be faulty.

Temperature gradients  around the gravimeter, have been shown to affect meter performance

considerably (Kangiessar, 1982; Nakagawa et al., 1983) and drastically, when there is fault as reported by

Osazuwa and Ajakaiye (1982). Temperature gradients cause changes in the spring elasticity and the length.

In the tropical climates, this phenomenon is more useful owing to observable higher temperatures (Chineke

et al, 2000). Kiviniemi (1974) has established controlled condition laboratory experiments, yielding

instrument specific reactions. The LCR scale reading was 16 mGa1/10oC with a daily drift of 4.8 mGal/10oC.

Nakagawa et al.  (1983), in precise calibration tests, reported high gravity values in cool environments and

low values in cold environments. There is a renewed emphasis on increasing the chamber temperature for the

more recent models, up to 50 o C as a way of reducing abnormal drifting. A major  concern  in countries like

Nigeria with intense sunshine will be the problem of providing enough temperature shielding in order to

maintain the chamber temperature.

2    THE   GRAVIMETER   RESPONSE

The LCR gravimeter, consists of a gravity response system and a thermostat. The gravity response is a

weight borne on the end of a horizontal beam supported by a zero length spring. The horizontal beam

carrying the mass is held at its’ center of mass by an inclined counter spring. A lever arm principally to

magnify the gravitational disturbance is connected to the meter housing by two symmetrically arranged

horizontal springs. The measuring system can be controlled optically or electronically. In the former, the

shadow of a tiny wire attached to the beam (the “crosshair”) is projected on a divided scale and observed in

an eyepiece. Electronically, a built-in galvanometer is used. The spring system is usually maintained at a

position of optimum tilt, using a leveling mechanism, which is controlled, by two liquid bubble levels. The

system is kept at an operating temperature of approximately 50oC. The details of the instrument and other

operational specifications are contained in the instruction manual (Lacoste&Romberg,, 2001).

Our observations have been based on the  appreciation of the theory of the response (Fig. 1), of the spring

system. The equation of motion is given by:

m g b b k X X m bocos ( )sin( )
..

θ φ θ θ= − − = 2 (1)

where g is the magnitude of the gravitational field, k is the spring constant, and X0 is the unstretched length

of the spring. Using the sine law,
S X X

sin( ) sin( / ) cosφ θ π θ θ−
=

+
=

2
(2)

We can set θ
..

→ 0  in equation (1). Then, combining equations (1) and (2),

we have,
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Simplifying then gives

m g k S
X

Xe

= −








1 0 (3)

where, X ≈ Xe is the equilibrium length of the spring (for y = 0)

For minute oscillations,
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with ∆X y e≈ sin .φ  The equation  of motion now becomes
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This is of the usual form,
m y y+ =ω0

2 0˙̇ (6)

where ω φ0
0 2

1 2

=


















k

X

Xe
esin

/

(7)

Since ω π ω φ= ∝ ∝2 T T T, , sin then .

Also sincesinφe
e

s

X
= , the implication is that for equilibrium, T must be extended for S → 0. The instrument

is therefore essentially a long period vertical seismometer, and operationally unstable and bulky according to

Peters (2001). The concept of zero length utilized to guard against this in the gravimeter presupposes that
from equation (7), that T can  also be lengthened by letting X0 → 0 for constantφe . This concept which leads

to a pre-coiling mechanism, utilizing a helical configuration, only means that the first result, of tension as

Melchior (1983) puts it, is to “ uncoil the helix”. This is a major constraint in the tropical use, as we discover

that the normal linear drift of about 8 x 10-3 mGals /hour becomes abnormal as a result of temperature-

induced tension coupled with the associated hysteresis in the spring.

3  OBSERVATION  PROCEDURE

Our observations were made with a Lacoste-Romberg gravimeter model G (468), at a fixed location in Jos,

Nigeria (longitude 8° 53’ E, latitude 9° 57’ N and elevated at 1159 meters above sea level). Since conditions

could not be simulated, we found the area is particularly suitable for the study, given its peculiar geology and

temperature. In addition, it has low seismicity, and records temperature extremes (the lowest in Nigeria) of

about 4-9° C to moderately high values approximately 23-35° C. Preliminary investigations to determine

gravimeter specifications i.e. reading line, sensitivity, and normal drift, were carried out and compared with

the manufacturer's specifications. The systematic components of associated errors namely reading error, and

leveling were found. The effect of fluctuations in chamber temperature and the relationships with variations

in system voltage was assessed. Since the external temperature effects were of prime interest in this study,

we monitored the drifts and sensitivity on a daily basis, recording the temperature, atmospheric pressure, and

the relative humidity (R.H) for a 30-day period. We have only selected the temperature extremes for those

times when the pressures and the R.H were the same for the basis of comparison. Also since each reading

recorded was an average of three observations which were then corrected for earth tides, our assessment is

quite representative of the true picture of the temperature phenomenon, other meter conditions being

constant.
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4   RESULTS   AND   DISCUSSION

We present here the deviations of the gravimeter drift and sensitivity from some predetermined “optimum”

values. The optimum values were obtained at a chosen tropical temperature of 23° C.  The normal drift at this

temperature derived from the linear trend of a 72-hour tidal response is shown in Figure 2 to be 0.0079

mGals/hour. It should be noted that 1mGal = 10–5 m s-2. The value of the R-squared was almost 85 percent.

The gravimeter sensitivity defined as the number of cross hair divisions corresponding to one complete turn

of the measuring dial, has a value of almost unity (Fig. 3) which is in line with the manufacturer’s

specification. At a temperature of 10° C, there were not any noticeable changes in the drift, but the

correlation of the sensitivity has dropped by roughly 0.02 (Fig. 4). The drift pattern for sudden changes in the

external temperature is however phenomenal and is plotted in figure 5. Beginning from the point of the

temperature jump, the initial creeping response associated with hysteresis is evident, and the response is

repeated on reverting to the initial temperature.

Generally, it was revealed that a positive drift yielded when the meter was brought from a cooler

environment to a warmer one and a negative drift when it was moved the opposite direction. The “creep”

arising from spring contraction and relaxation has been explained by Torge (1983), as initiating a temporary

variation in the spring constant. Considering the fact that the meter spring is enclosed in an insulating shield

and maintained at an operating temperature of 49.5° C well above most tropical temperatures, we suppose

that either the heat shield was no longer sufficient or that the thermostat must have been faulty. Both

possibilities would pose very serious constraints on meter function. The change in temperature within the

chamber in both directions exhibits long period non-linearity, as we show from the heating and cooling

curves in figure 6. The two curves form truncated hysteresis loops like observed earlier by Osazuwa and

Ajakaiye (1982).  A closed loop formed from the two truncated ones will have a period of about 96 minutes.

A gravimeter that has just been turned on heat from an idle period requires 100-120 minutes waiting time for

readings to be obtained with normal drift (Fig. 7). This, we feel, translates to the time for closing up the

hysteresis loop initiated by temperature “tension”, similar to the time that must be observed for the

unclamped spring to stabilize.

For the analysis of the drift above to be better understood, we here evoke the usual theory of the long

period vertical seismograph. The period T of the system is given by

T
g

X X2
2

0

4
= −( )π

∆
(8)

where the extension of the meter from equilibrium X – X0, corresponds to a gravity change ∆g. The Taylor

series expansion of the meter reading with respect to time t is given by Torge (1989) as

g t g t
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 with t0 being the reference time of the respective measurement period. The first two terms of equation (9)

yields the drift i.e.
dg t

dt T
X X

( )
= −( )4 2

2 0

π
(10)

For a gravimeter initially unclamped from equilibrium position, short periodic movements give rise to

abnormal non-linear drifts. Temperature changes have similar quasi-static elastic effects. For measurements

made immediately after unclamping, Nwofor (1994) has recorded errors of about 6 x 10-1 mGals/minute in

the normal drift. This reduced to about 10-3 mGals /minute when 5 minutes was allowed after unclamping

and before measurements were taken. For similar reasons, it is recommended that the gravimeter be allowed

at least 1 hour for stability in a new temperature environment, or whenever temperatures change suddenly

near the meter, that is in case the internal temperature provisions are not effective.
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In the case of the sensitivity-temperature anomalies observed, we refer to the normal positions of the

spring system at the time of gravity measurements (Fig. 8). We can set the force laws of the system to be
m g b b k Xcos sinγ φ= (11)

and from Sine law X ssin sinφ β= (12)

From analysis similar to that by Melchior (1983), we can show that the sensitivity of the instrument is

dg
g b d

X X
=

−
sin
( )

β β
2 1

(13)

The angles α and β can  be modified to obtain optimum operational sensitivity by using the long level and

measuring spring respectively. Melchior (1983) had shown that
dg g g= +cot ( )α β α∆ (14)

where ∆α is the setting or leveling error, given by

∆α α α= −s 0 (15)

α s  is the setting angle and α0  is any optimum setting angle. When α αs = 0 , there is no error in leveling.

When  γ α β
π

= +( ) =0
2

,  and we can write equation (14) as

dg c g= ∆α (16)

where c is a constant.

Hence, the sensitivity is uniquely determined by the setting error and as such by the long level. As

we have shown from equation (16), errors in the long level will be perceived in the form of gravity change.

We obtained for a 13° C decrease in temperature, a drop in sensitivity of about 0.02 counter

divisions/dial unit. Since 1 complete dial turn is equivalent to 1 mGals, and 1 unit of the measuring dial is

0.1mGal, then about 0.002 mGals error would have resulted due to the temperature difference. Temperature

changes can affect the sensitivity by affecting either the measuring spring or by imposing some setting

errors. Temperature-induced bubble drifts of the liquid level mechanism that now reduces their precision for

meter leveling, we understand, could cause the later. Although we could not assess completely, the bubble

drift–sensitivity relationship, when we tilted the meter by one scale division, in the long level (Fig. 9), the

observed sensitivity did go up by about 0.001 counter divisions / dial unit, becoming exactly unity. The

result was the limiting of crosshair motion to units above the reading line (2.2). Again like the problem of

gravimeter spring drifting, the requirement for arresting temperature induced sensitivity problem would be to

observe some time for bubble stability, since the liquid bubble type, LCR gravimeters are still the most

common in countries like Nigeria.

5  CONCLUSIONS

In the tropics where erratic and high magnitude temperature variations are common, there seem to be

severe limitations in the use of aging Lacoste-Romberg gravimeters for gravity surveys as its temperature

compensation may be inadequate. This is because the active components of the instrument are largely

temperature–dependent. A temperature variation in the environment where the LCR is located, affects the

sensitivity of the instrument. This it does by realigning the measuring spring and the liquid bubbles thereby

causing leveling errors. This in turn affects the meter drifts by initiating elastic hysteresis in the spring. These

cause errors in gravity measurements that are often very difficult to account for in field work, and equally

difficult to model. The implication is that certain field procedures for achieving optimum results must be

adopted in the utilization of the LCR gravimeters. We have summarized these in Table 1. This is in addition

to the error buggets provided ealier by Torge (1983, 89), Kangiessar (1986) and others.

An essential part of the present procedure would require long periods of waiting for meter stability.

In the study of certain short period geodynamic phenomena, such time observance for stability may be

unrealistic. The best option will then be to correct for these effects from prior instrument-specific responses,
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aided by knowledge of associated periodicities (Mishra and Rao, 1997). It may also be necessary for accurate

temperature forecasts to accompany the deployment of gravimeters for fieldwork.
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Table 1: Summary of error reduction of the temperature effects by the optimum procedure with the errors
represented by root-mean-square (∆g) values in microgals

Error Source Associated Error in

the normal procedure

Additional measures

in the optimum

procedure

Possible Errors after

additional measures

1) Spring hysteresis

2) Leveling Errors

3) Chamber

temperature variations

~ 10 depending on

magnitude and period

of the change

- do –

- do-

At least 30 minutes

waiting time in new

temperature

environment for spring

stability

a) at least 30 minutes

waiting time in

new temperature

environment for

bubble stability

b) sensitivity check

by temperature

parallax

a) at least 2 hours

waiting time from

the time

gravimeter is

operated from idle

periods

b) additional

aluminum casing

c) modelling of

thermostatic errors

< 1

<1
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ABSTRACT

The achievement of the national gravity reference network of Republic of Moldova (NGRNM) represents

the first step in merging gravity networks of Romania and Republic of Moldova. The project started as a

joint venture of the Institute for Geophysics and Geology of the Academy of Sciences of Republic of

Moldova and the Geological Institute of Romania. It is part of a larger program, GRANAT (Gravity

Networks Advanced Ties), aimed to join gravity images over the state borders of Romania, Ukraine and

Republic of Moldova, in an area where several major geotectonic units met each other along the SW margin

of the East European Plate.

The paper mainly deals with problems connected to gravity determinations along the NGRNM ties and their

adjustment. The NGRNM consists of seven first order gravity stations regularly spaced over the Moldavian

territory. They have been tied within a triangle network with central base station (Chisinau) by using a

LaCoste & Romberg model D gravity meter. Gravity vertical gradient determinations in every base station

have been also performed by repeated measurements at every site at two different levels: 0.30 meters, and

0.80 meters above the ground.

The NGRNM has been adjusted by least square method as a free network, using four stochastic models

based on various weighting systems.

Provisional absolute gravity values within the NGRNM have been obtained by connecting the new network

to the national reference networks of Romania.

Key words: gravity, reference network, Republic of Moldova, GRANAT project

GENERAL CONSIDERATIONS

Located in the eastern part of the Central Europe (Fig. 1), Republic of Moldova was one of the components

of the former Soviet Union. After getting the independence, the new state faced a lot of problems connected

to its new status, and, among them, the necessity for a national gravity system, as close as possible to the EU

gravity standard.

Taking the advantage of the fact that one of the neighboring countries, Romania, had been actively taking

part to the UNIGRACE project (Rosca, 1999; Rosca and Besutiu, 2000), aimed to the integration of the

gravity systems of the former European socialist countries into the EU system, a joint venture of the Institute

of Geophysics and Geology of the Moldovan Academy of Sciences, and the Geological Institute of Romania

started in the year 2000 in order to accomplish this task. Actually, this work represents, in a way, an extent of

the above mentioned EU funded project, and is part of a larger project, GRANAT (Gravity Networks
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Advanced Ties), which was aimed to join gravity images over the state borders of Romania, Ukraine and

Republic of Moldova, in an area where several major geotectonic units met each other: East European Plate,

Alpine Carpathian Orogene, North Dobrogea folded belt, Moesian Plate and Scythian Plate.

NETWORK DESIGN

The design and field activities for the achievement of the national gravity reference network of Moldova

(NGRNM) were thoroughly presented in a previous paper (Besutiu et al, 2001b). However, for a better

understanding of the stochastic models used in the adjustment, in the followings the main aspects of its

achievement will be summarized.

The gravity reference network was designed as a triangle network with central station, in a similar manner to

the former 1st order gravity reference network of Romania (Botezatu, 1961). Location of the gravity stations

were mainly planned on the concrete pillars of the seismological stations of the National Seismic Monitoring

Network of Republic of Moldova (Chisinau, Soroca, Cahul, Leova).

As this configuration proved to be too scarce for gravity purposes, several base stations were added to

appropriately cover the territory: Balti (located at the orthodox cathedral “St. Nicolae”, in the central part of

the city), Ungheni (at the orthodox church “St. Alexander Nevski”), and Causeni (at the memorial dedicated

to Alexei Mateevici, located in the central square of the town). Table no. 1 shows the geographical

coordinates of the NGRNM base stations.

Table no. 1 - Location of the NGRNM base stations

Station code latitude longitude

CHISINAU* 46º59’ 52.0” 28º 40’ 05.0”

SOROCA* 48º 07’ 53.5” 28º 20’ 31.0”

BALTI 47º 45’ 40.0” 27º 56’ 00.0”

UNGHENI 47º 12’ 00.0” 27º 48’ 00.0”

LEOVA* 46º 28’ 24.6” 28º 14’ 53.3”

CAHUL* 45º 54’ 18.8” 28º 12’ 02.4”

CAUSENI 46º 38’ 15.0” 29º 24’ 30.0”

Asterisks mark common location with seismic monitoring network stations.

Special forms including map sketches and photos have been also provided for a complete description of

every base station.

DATA ACQUISITION

Instruments

Gravity determinations along the NGRNM ties were performed by using the LaCoste & Romberg D-214

meter owned by the Geological Institute of Romania.

During the works, factory scale factor has been used to turn direct readings into gravity units. However, the

meter has been checked up before, and after the end of the field campaign, by measuring along the

UNIGRACE calibration line Cluj-Napoca – Belis (Besutiu et al, 2001a). Figures provided by factory were

fully confirmed by gravity range determined along this calibration line (172.118 mgals).

Although the meter is fully thermostatic, due to the extremely low external temperatures experienced during

the works, small variations of the temperature inside the instrument occurred during the measurements.
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Consequently, the measuring temperature was carefully read every time, and took into consideration as a

weighting constraint when adjusting the results.

Methodology

As previously mentioned, the NGRNM was designed as a triangle network with central station. Each gravity

tie was measured at least twice, within independent measuring loops performed in different days. At least

three dial readings were taken each time at every location.

Drift and tidal corrections have been applied to every measurement. Average values of the distinct

determinations were taken into consideration as representative values for each gravity tie. The quality of the

obtained results was carefully examined and evaluated (Besutiu et al, 2001b). Table no. 2 summarizes the

results.

Table 2 - Mean gravity and associated measuring parameters along the NGRNM ties

Network tie Tie
code

∆∆∆∆g

(mgal)

rms
(mgal)

e
(mgal)

∆∆∆∆t

(0C)

∆∆∆∆T

(minutes)

Chisinau-Soroca 1 120.217 0.018 0.008 0.10 375

Chisinau-Balti 2 79.518 0.018 0.007 0.06 366

Balti-Soroca 3 40.701 0.002 0.002 0.01 223

Ungheni-Balti 4 45.272 0.002 0.002 0.02 156

Chisinau-Ungheni 5 34.236 0.010 0.006 0.08 320

Chisinau-Albita 6 13.969 0.006 0.005 0.08 290

Leova-Albita 7 30.037 0.005 0.005 0.01 200

Leova-Chisinau 8 16.068 0.014 0.004 0.09 314

Cahul-Chisinau 9 96.858 0.012 0.004 0.15 598

Cahul-Leova 10 80.795 0.002 0.002 0.05 268

Causeni - Cahul 11 91.430 0.020 0.020 0.02 600

Causeni-Chisinau 12 5.442 0.010 0.004 0.13 278

where ∆g = mean gravity value along the network tie

rms = mean standard deviation of a measurement

e = standard deviation of the mean gravity

∆t = maximum temperature deviation during the measuring loop

∆T = mean duration of the measuring loop

Fig. 2 presents the network design and triangle closures.

NETWORK ADJUSTMENT

Network adjustment has been performed under the hypothesis that measurements along the ties have been

affected by random errors only. Systematic effects (such as the influence of the scale factor for instance)

have been not taken into account at this research stage.

Mean gravity value observed along the network ties was the entity to be adjusted according to the adopted

model
∆Gi = ∆gi + vi          ( i = 1,2, … ,12) (1)
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where ∆Gi represents an estimate of the gravity after the adjustment

∆gi represents the observed gravity (before the adjustment)

vi represents the correction to remove the observation error

Least square method in the variant of conditioned direct observations within a free network has been

considered. As random errors affecting the observations have been considered to represent a normal

repartition, the adjustment was made under the well–known constraint of minimization (2)

[pvv] = p vi i
i

2

1

12

=
=
∑ V * PV (2)

where pi represents the weight of the observation i (i = 1,2, … , 12)

P is the weight diagonal matrix (P = [pii])

V is the corrections (vi) vector (V = [vi])

V* represents its transposed matrix.

According to Wolf (1975) and Detrekoi (1991) the weights can be inferred from a simple equation

p
c

mi
li

=
2

2
      (i=1, 2, …,12 ) (3)

where c is the unit weight error, and 
il

m  is the RMS error of the mean value of the observations along the

tie i.
It has been previously demonstrated (Detrekoi, 1991) that c value can be estimated from

c 2= V*PV/f (4)

where f is the number of conditional equations, and P is the weights diagonal matrix.

Four functional-stochastic models have been used during the network adjustment, based on different

weighting systems:

a) equal accuracy observations, meaning

pi = 1 (5)

b) weights related to the temperature variations during the measuring cycle,

Yi =   0.06/∆ti (6)

c) weights related to the eventual drift nonlinearities, depending on the length of the measuring loop

Zi = 314/ di (7)

and, finally,

d) weight as a function of the RMS error of the observations on each tie, meaning

Xi = (0.004)2/ mli

2 (8)

The weight systems used for the network adjustment are shown in Table no.3.
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Table 3 - Weighting systems used in the adjusting

weighting

factor

RMS error of the gravity

mean value

(mgal)

temperature variations duration of the measuring

cycle

gravity tie

i

mli weight

Xi

∆ti

(0C)

weight

Yi

di

(minutes)

weight

Zi

1 0.008 1/4 0.10 3/5 375 314/375

2 0.007 16/49 0.06 1 366 157/183

3 0.002 4 0.01 6 223 314/223

4 0.002 4 0.02 3 156 157/78

5 0.006 4/9 0.08 3/4 320 157/160

6 0.005 16/25 0.08 3/4 290 157/145

7 0.005 16/25 0.01 6 200 157/100

8 0.004 1 0.09 2/3 314 1

9 0.004 1 0.15 2/5 598 157/299

10 0.002 4 0.05 6/5 268 157/134

11 0.020 1/25 0.02 3 600 157/300

12 0.004 1 0.13 6/13 278 157/139

unit weight

before the

adjustment

0.004 1 0.06 1 314 1

Table no. 4 illustrates the conditional equations as inferred from the triangle closures.

Table no. 4 Conditional equations within the network adjustment

Network

triangle

network tie tie

code

i

observed

gravity

li

(mgal)

RMS

error

±
il

m

(mgal)

Conditional equation Tolerance
threshold

(mgal)

Chisinau → Soroca 1 120.217 0.008

I Chisinau → Balti 2 79.518 0.007 -v1+v2+v3 + 0.002=0 0.0108

Balti → Soroca 3 40.701 0.002

Chisinau → Balti 2 79.518 0.007

II Chisinau → Ungheni 5 34.236 0.006 -v2+v4+v5 - 0.0100=0 0.0094

Ungheni → Balti 4 45.272 0.002

Chisinau → Leova 8 -16.068 0.004

III Chisinau → Albita 6 13.969 0.005 v6+v7-v8 + 0.0000 =0 0.0081

Albita → Leova 7 -30.037 0.005

Chisinau → Cahul 9 -96.858 0.004

IV Cahul → Leova 10 80.795 0.002 -v8+v9+v10 + 0.0050=0 0.0060

Chisinau → Leova 8 -16.068 0.004

Chisinau → Cahul 9 -96.858 0.004

V Cahul → Causeni 11 -91.430 0.020 -v9+v11+v12 - 0.0140=0 0.0208

Chisinau → Causeni 12 -5.442 0.004
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The last column in Table 4 shows the tolerance threshold (Detrekoi, 1991). The appropriate quality of the

gravity observations is emphasized by the fact that no closure is above the computed tolerance. The slight

disagreement noticed in the case of triangle II is insignificant, and much below the instrument accuracy.

The matrix of the coefficients of the normal equations (N) will be

N = A*P-1A (9)

where P-1 represents the inverse of the weight matrix.

The corrections vector has been obtained through the inverse matrix of the coefficients of the normal

equations system (N-1)

V = - P-1AN-1T (10)

where T is the closures vector.

The covariance matrix is defined by

Q = [qij] = P-1 – (P-1A) N-1(A*P-1) i, j = 1, 2 … 12 (11)

and unit weight after the adjustment

c  = (V*PV /f) 1/2 (12)

where f is the number of equations used.

RMS error of the adjusted gravity on each tie was computed from the coefficients of the covariance matrix

and the related unit weight

mi = c  (qii) 
1/2 (13)

The coefficients of the equations and the results of the network adjustment for various stochastic models

using different weighting systems are shown in Table 5.
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Table 5 Conditional equations and adjustment variants for various weighting systems

Gravity

tie

Conditional equations coefficients

(equal weight)

adjustment values for various weighting systems

i I II III IV V a b c d

1 -1 -0.0005 -0.0011 -0.0012 -0.0025

2 1 -1 -0.0030 -0.0037 -0.0033 -0.0046

3 1 0.0005 0.0007 0.0001 0.0002

4 1 0.0035 0.0021 0.0013 0.0005

5 1 0.0035 0.0042 0.0054 0.0048

6 1 0.0000 -0.0001 -0.0005 0.0009

7 1 0.0000 -0.0001 -0.0001 0.0009

8 -1 -1 0.0001 -0.0002 -0.0005 0.0017

9 1 -1 -0.0048 -0.0054 -0.0061 -0.0027

10 1 -0.0001 0.0002 0.0006 -0.0006

11 1 0.0046 0.0059 0.0011 0.0109

12 1 0.0046 0.0027 0.0068 0.0004

t* 0.002 -0.010 0 0.005 -0.014

[ pvv ] 9.9381.10-5 8.1311.10-5 7.9358.10-5 0.7613.10-5

before adjustment 1.0000 314.0000 0.0600 0.0040unit weight error

after adjustment 0.0045 0.0040 0.0040 0.0027

| deviation | 0.9955 313.9960 0.0560 0.0013

where

a, equal weights

b, weighting according to the length of the measuring cycle

c, weighting according to the temperature deviation inside the meter

d, weighting according to the RMS error of the observations mean value

Among the four solutions of the network adjustment the best fit to the constraint

[pvv] = min (14)

is reached for the variant “d” (weighting related to the RMS error of the mean gravity along the tie), which

was somehow expected, as in this case the used weight cumulates the action of all error factors.

On the other hand, the worse fit was obtained in the case of the weight based on the length of the measuring

cycle (variant “b”). This shows that LaCoste & Romberg gravity meter accuracy was practically not

dependent on the drift factor.

Gravity ties considered after the network adjustment are presented in Table no. 6.

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



Table 6 Observed and adjusted gravity along the network ties

i gravity tie ∆gi

(mgal)

vi

(mgal)

∆Gi

(mgal)

mi

(mgal)

1 Chisinau → Soroca 120.217 -0.0025 120.2145 ± 0.0029

2 Chisinau → Balti 79.518 -0.0046 79.5134 ± 0.0028

3 Balti → Soroca 40.701 0.0002 40.7012 ± 0.0013

4 Ungheni →  Balti 45.272 0.0005 45.2725 ± 0.0013

5 Chisinau → Ungheni 34.236 0.0048 34.2408 ± 0.0028

6 Chisinau → Albita 13.969 0.0009 13.9699 ± 0.0026

7 Albita → Leova -30.037 0.0009 -30.0361 ± 0.0026

8 Chisinau → Leova -16.068 0.0017 -16.0663 ± 0.0018

9 Chisinau → Cahul -96.858 -0.0027 -96.8607 ± 0.0019

10 Cahul → Leova 80.795 -0.0006 80.7944 ± 0.0013

11 Cahul → Causeni -91.430 0.0109 -91.4191 ± 0.0032

12 Chisinau → Causeni -5.442 0.0004 -5.4416 ± 0.0026

where 

∆gi represents the observed gravity along the tie i

vi is the correction along the tie i

∆Gi represents the adjusted gravity along the tie i

mi is the RMS error after the adjustment

NETWORK DATUM

As previously mentioned, NGRNM datum was provided by connecting the Moldovan network to the

national gravity reference networks of Romania (Besutiu et al, 1994). To avoid long measuring cycles when

crossing the state border checking points, the transfer operation was planned and executed in two steps.

During the first step, the transfer station Albita, located in the cross-border area, was tied to the national

gravity reference network of Romania. To monitor the quality of the determinations a triangle system was

used (Fig. 3). Two base stations (conventionally called station N and station S) were used to transfer the

absolute gravity value into the cross-border area. Table no. 7 summarizes the results of these determinations.

Table no. 7 Gravity ties between Albita and the Romanian gravity reference networks

Base station code Absolute gravity
(mgals)

Gravity tie to Albita
(mgals)

Gravity transferred
(mgals)

Station N 980735.45 ± 0.046 46.050 ± 0.030 980781.500 ± 0.060

Station  S 980749.83 ± 0.050 31.669 ± 0.030 980781.499 ± 0.060

Triangle closure (0.001 mgals) was far below the instrumental accuracy, advocating for the high quality of

the gravity transfer.

Thereafter, the average absolute gravity value transferred to the Albita station was considered 980780.500 ±

0.060 mgals.

The second step in the datum transfer consisted in gravity ties between the base station Albita and the

central base station of the NGRNM, Chisinau. A similar triangle system was used on purpose, by linking the

Romanian Albita transfer station to both Chisinau and Leova NGRNM base stations (see Fig. 2). This
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absolute gravity transfer triangle was then integrated into the stochastic model for NGRNM adjustment, and

observed values accordingly corrected. Finally, the absolute gravity assigned to the central station of the

NGRNM, Chisinau, was equal to 980767.530 mgals.

Following this operation, absolute gravity values were transferred to each base station of the NGRNM

through the adjusted gravity ties connecting them to the central station. The results are summarized in

table no. 8.

Table no. 8 Absolute gravity values and the vertical gradient of the gravity within the base stations of
NGRNM

Geographical co-ordinates Absolute gravity
(mgals)

Vertical gradient
(mgals/m)

Station code

latitude longitude Mean value rms Mean
value

rms

CHISINAU* 46º 59’ 52.0” 28º 40’ 05.0” 980767.530 ±0.067 -0.279 ±0.007

BALTI 47º 45’ 40.0” 27º 56’ 00.0” 980847.043 ±0.067 -0.282 ±0.003

CAHUL* 45º 54’ 18.8” 28º 12’ 02.4” 980670.669 ±0.067 -0.295 ±0.006

CAUSENI 46º 38’ 15.0” 29º 24’ 30.0” 980762.088 ±0.067 -0.294 ±0.007

LEOVA* 46º 28’ 24.6” 28º 14’ 53.3” 980751.467 ±0.067 -0.323 ±0.006

SOROCA* 48º 07’ 53.5” 28º 20’ 31.0” 980887.745 ±0.067 -0.284 ±0.008

UNGHENI 47º 12’ 00.0” 27º 48’ 00.0” 980801.771 ±0.067 -0.309 ±0.005

* located on the pillars of the National Seismic Monitoring Network

It should be mentioned that absolute gravity values in the table refer to the relative height of 0.30 meters

above the ground. Vertical gradient values, valid between 0.30 m and 0.80 m (Besutiu et al, 2001b), are also

added to allow eventual gravity transfers from NGRNM to other locations according to the height of the

tripod of the meter used.

FINAL REMARKS

The new national gravity reference network of Republic of Moldova was achieved as a triangle network with

central base station located in the capital of the country. Gravity measurements along its ties were performed

by using the high accuracy LaCoste and Romberg D-214 meter owned by the Geological Institute of

Romania. The obtained accuracy was fully within the instrumental range. Starting from the triangle closures,

the network was adjusted by using least square method for several weighting systems. Among them, the best

result was obtained when referring to the standard deviation of the mean gravity values along the ties.

NGRNM datum was provided by transferring absolute gravity from the Romanian gravity reference network

to its central base station.

It is expected that provisional absolute gravity values, as provided in the table no. 8, would be slightly altered

after re-adjusting the Romanian national gravity reference networks by constraining them on the

UNIGRACE absolute base stations. However, mention should be made to the fact that comparisons between

the actual Romanian gravity system, and the gravity standard of the Central and Western Europe, showed an

excellent scale factor and small differences only in the network datum (Besutiu et al, 2001a). Therefore, it is

likely that the gravity system of Republic of Moldova would be easily integrated into the EU gravity

standard.
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Fig. 1 Location of the study area
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Fig. 2 Gravity variations along the ties of the Moldovan gravity reference network and triangle closures

1, seismic monitoring base stations; 2, gravity reference network base stations; 3, Romanian  base

station for the gravity datum transfer; 4, state border; 5, gravity range (in mgals); 6, triangle closure (in

mgals)
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Fig. 3 The design of the network for the gravity datum transfer from the Romanian gravity reference

networks to border area
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Abstract:  Many surface modeling techniques can be used for local geoid determination. These can be

listed as; Inverse distance to a power, kriging, minimum curvature, nearest neighbor, polynomial

regression, radial basis function, Shepard’s Method’s, Triangulation/Linear Interpolation, collocation etc.

Each technique has different calculation methods and used for different type of land. At the same time,

each of them has some advantage and disadvantage.

In this paper, theoretical and mathematical principles of some surface modeling techniques for geoid

determination have been examined. In this concept, a test area has been selected and geoid models of this

area have been created by some selected modeling techniques.

Here it is searched that accuracy, practicability and serviceability of surface modeling techniques. All

techniques have been compared to each other and known geoidal heights values from GPS and geometric

levelling for 26 selected points.

1 Introduction

Heights, obtained from GPS are ellipsoidal heights and this kind of heights has theoretical

meaning. In practice, ortometric heights are used commonly.

Ellipsoidal height of point P on the earth is distance between points P and ellipsoid surface at

ellipsoidal center direction. Ortometric height of points P is distance between point P and geoid

surface at gravity vector direction.
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Fig (1) Relationship between ellipsoidal and ortometric heights

After GPS observation and processing it can be obtained (XYZ) cartesian or (ϕλh) geographic

coordinates of point P. Determination of ortometric height H of point P from ellipsoidal height h

depends on determination of geoidal height N.

In practice, for determination of geoidal heights especially for local application, require control

points which both ellipsoidal and ortometric heights are known. Thus geoidal heights of control

points N can be calculated from difference between ellipsoidal and ortometric heights. For

calculation of geoidal height of a point with (ϕλ) geographic or (x,y) plan coordinates is

required determination of  geoid surface model of application area by using control points

geoidal heights (Akçın 1998;IGNA 1999;Ollikainen 1997; Soycan 2002; Zhang 2000).

There are a lot of techniques for determination of surface models of geoid. Some of these

techniques are used direct observation values and the others can be used after adjustment and

filtering.  Models using determination of geoid surface must be realistic and well adjusted with

structure of surface. However surface models must be suitable for structure of surface and

filtering and susceptible for extrapolation and interpolation.

Several techniques are used for determination of geoid surface and it can be listed as;

 Interpolation
 Finite Elements
 Collocation
 Numerical differential solution
 One dimensional datum transformation

In this paper it has been examined some interpolation techniques. For this purposes, geoid

models of   Istanbul have been calculated, processed and compared. The digital elevation model

of the test area has been reported in fig (2).
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Fig (2) Digital elevation model of test area

In calculation, it has been used Surfer (Win32) software. It is very powerful for the 3D-

Visualization, it is fast, without consuming much disk space and uncomplicated with object

manager. All processes (gridding, mapping) can be automated with writing programs in Visual

Basic. Help menus content is very useful and describes also background information (Golden

Software).

2 Some surface models for determination of GPS local geoid

2.1 Polynomial regression methods

Polynomial regression is the most common method for geoid surface modeling and this is

described as;

( ) ∑ ∑
= =

==
n

0i

jim

0j
ija,N λϕλϕ         (1)

This method is used to define large-scale trends and patterns in data, there are several options to

define the type of trend surface and this can be listed in below. Polynomial regression is not

really an interpolator but it can be used for determination of trend surface (Golden Software).

 Simple Planar Surface
λϕ 2100 aaaN ++=         (2)

 Bi-Linear Saddle
ϕλλϕ 32100 aaaaN +++=         (3)

 Quadratic Surface

ϕλλϕλϕ 5
2

4
2

32100 aaaaaaN +++++=         (4)
 Qubic Surface
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3
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2
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2
32100 aaaaaaaaaaN ϕλλϕλϕϕλλϕλϕ +++++++++=     (5)
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For higher degree polynomial it can be used equation (1). In practice, for surfacing with

polynomial regression, selection of polynomial degree is very important. The surface can be lost

its reality and suitability due to wrong selection of coefficient and polynomial degree. In

surfacing with polynomial regression methods, degree of polynomial is depending on number of

points and degree of freedom. As possible as it must be started with the highest degree and the

most suitable coefficient must be determined by using statistical tests (Kraus 1972; Miller 1958;

Schut 1976;Yanalak 1991). In this research, polynomial degree has been selected 5,6,7,9

respectively for 25,50,100,214 control points. Contour plot of the geoidal heights for

25,50,100,214 control points has been reported fig (3).
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Fig (3) Counter maps of geoid obtained from polynomial regression

2.2 Multi-quadratic surface models

In this method, depending on known control points, a trend surface is determined by using

simple planar or quadratic surface. After this operation, residuals in control points are used for

surfacing and all surface coefficients are calculated (Golden Software). All surface area is

described with only one function. Parameters of function are determined from all control points.

For multi-quadratic surface model;

( ) fy,x,y,xQCN
n

1j
iii += ∑

=
∆             (6)

( ) ( ) ( )[ ] 2/12
i

2
iii yyxxy,x,y,xQ −+−=         (7)

f: correction value(it can be selected 0.1 or 0.6Q2
min). For determination of surface coefficient

eq.(6)is re-written as below;
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This equation set can be solved by least squares method and coefficients are obtained. Geoidal

heights of new P(x,y) point can be calculated as below;

( ) 22
j

n

1j
jP )yy(xxc)y,x(tN j −+−+= ∑

=
         (9)

Here t(x,y) is trend value obtained from simple planar or quadratic surface polynomial

regression. After Multi-quadratic surfacing, there are any residuals in control points and

distribution of control points does not affect results (Kraus 1972; Miller 1958; Schut

1976;Yanalak 1991). Contour plot of the geoidal heights for 25,50,100,214 control points has

been reported fig (4).
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Fig (4) Counter maps of geoid obtained from multi-quadratic surface models

2.3 Triangulation- Linear interpolation

The Triangulation interpolator is an exact interpolator. Linear surface is a planar and it can be

described as λϕ 2100 aaaN ++=  simple planar surface. In fig (5) the planar surface for

points 1,2,3 is shown.
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Where; a0, a1, a2 coefficients are calculated from these equations;
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Triangulation works best when data points are evenly distributed over the grid area (Golden

Software). Data sets that contain sparse areas result in distinct triangular facets on a surface plot

or contour map. Triangulation is very effective at preserving break lines (Kraus 1972; Miller

1958; Schut 1976;Yanalak 1991). Contour plot of the geoidal heights for 25,50,100,214 control

points has been reported fig (6).
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Fig (6) Counter maps of geoid obtained from linear interpolation/triangulation
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2.4 Nearest neighborhood surface models

In this approach, geoid surface is divided small parts and each part is described with a different

function. To calculated geoidal height of a new P point; it is used surface obtained from nearest

control points. In selection of control points, it is used user defined search circle or ellipse. As a

function of this surface it can be used lower degree polynomial. Using different function is

caused splits; break lines and discontinuity along the boundaries (Golden Software).

If the surface is not homogenous, this method can be used. To pretend splits, break lines and

discontinuity, conjunction function must be used and these problems are solved by only one

function for this surface. Thus, this method cannot be suitable in every respect (Kraus 1972;

Miller 1958; Schut 1976;Yanalak 1991). Contour plot of the geoidal heights for 25,50,100,214

control points has been reported fig (7).
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Fig (7) Counter maps of geoid obtained from nearest neighborhood surface models

2.5 Inverse distance to a power surface models

The inverse distance to a power method is a weighted average interpolator. The power

parameter controls how the weighting factors drop off a distance from a new unknown point.

For a larger power, closer data points are given a higher fraction and the overall weight. For a

smaller power, the weights are more evenly distributed among the data points (Golden

Software).

Surfacing with these methods, firstly a trend surface from polynomial regression and residuals

in control points are used for determination surface (Kraus 1972; Miller 1958; Schut

1976;Yanalak 1991).
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 The most important property of method is generation of “bull’s-eye” surrounding the position

of observation within the gridded area. These effects can be reduced by using smoothing

parameters. Contour plot of the geoidal heights for 25,50,100,214 control points has been

reported fig (8).
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Fig (8) Counter maps of geoid obtained from inverse distance to a power surface models

3 Comparison of surface and evaluations

For comparison and defining optimum surface models, surfacing is made by different number of

control points. In addition, 26 new points (distributed homogenous) have been selected in

application area and geoidal heights of new points calculated from GPS-Geometric leveling

measurement.  26 new points geoidal heights have been calculated from each model by using

214,100,50 and 25 control points, and these have been compared with geoidal heights which

have been calculated from GPS-Geometric levelling, differences and rms values have been

evaluated.
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Table (1) Comparison of methods by using geoid obtained from 214 control points
214 Control Points

Methods
Max.

Difference
(mm)

Min.
Difference

(mm)

Average of
Absolute

Differences (mm)

RMS of Differences
(mm)

Polynomial Regression 93.9 2.5 29.6 39.86
Multi-Quadratic 80.3 0.4 20.9 31.96

Triangulation-Linear İnterpolation 70.0 1.1 17.1 24.90
Nearest Neighborhood 143.0 2.0 66.6 86.92

Inverse Distance to a Power 80.6 0.4 35.21 46.51

Table (2) Comparison of methods by using geoid obtained from 100 control points
100 Control Points

Methods
Max.

Difference
(mm)

Min.
Difference

(mm)

Average of
Absolute

Differences (mm)

RMS of Differences
(mm)

Polynomial Regression 98.8 3.0 30.58 39.94
Multi-Quadratic 84.8 1.0 28.12 37.59

Triangulation-Linear İnterpolation 80.7 1.3 32.05 39.69
Nearest Neighborhood 177.9 0.0 90.54 108.52

Inverse Distance to a Power 135.4 0.0 56.48 66.72

Table (3) Comparison of methods by using geoid obtained from 50 control points
50 Control Points

Methods
Max.

Difference
(mm)

Min.
Difference

(mm)

Average of
Absolute

Differences (mm)

RMS of Differences
(mm)

Polynomial Regression 123.2 0.7 34.42 50.27
Multi-Quadratic 94.6 4.9 30.20 42.70

Triangulation-Linear İnterpolation 81.8 5.6 40.44 49.06
Nearest Neighborhood 208.0 0.0 94.87 109.43

Inverse Distance to a Power 174.2 0.2 48.04 67.09

Table (4) Comparison of methods by using geoid obtained from 25 control points
25 Control Points

Methods
Max.

Difference
(mm)

Min.
Difference

(mm)

Average of
Absolute

Differences (mm)

RMS of Differences
(mm)

Polynomial Regression 209.2 2.8 56.42 86.18
Multi-Quadratic 127.2 5.2 43.34 57.03

Triangulation-Linear İnterpolation 135.4 0.6 44.79 55.81
Nearest Neighborhood 254.3 0.0 82.68 111.93

Inverse Distance to a Power 136.2 0.4 59.3 71.78
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Fig (9) RMS error of each methods obtained from 26 known geoidal heights.

4 Results

Polynomial regression is easy and practical methods and offer smooth surface, when surfacing

with polynomial regression; all coefficient must be tested and optimum coefficient must be

selected. Generally, this model is used for determination trend surface. Multi-quadratic models

use residuals in control points; residuals can be calculated from trend value obtained from

simple planar or quadratic surface polynomial regression. After Multi-quadratic surfacing there

are any residuals in control points and distribution of control points does not affect results. It is

very important property for surfacing.  Triangulation works best when data points are evenly

distributed over the grid area. Data sets that contain sparse areas result in distinct triangular

facets on a surface plot or contour map. Triangulation is very effective at preserving break lines.

Nearest neighborhood method uses different function for each part. Using different function is

caused splits; break lines and discontinuity along the boundaries. In application it can be seen

easily that rms error of this methods are very high.  Surfacing with inverse distance to a power

method, firstly a trend surface from polynomial regression and residuals in control points are

used for determination surface. The most important property of method is generation of “bull’s-

eye” surrounding the position of observation within the gridded area. It can be seen in figure 8.

Rms of these methods is higher than polynomial regression, multi-quadratic and triangulation-

interpolation methods. As a result of all evaluation polynomial regression, multi-quadratic and

triangulation-interpolation methods can be used for geoid surface; these models supply enough

accuracy for determination of ortometric heights from GPS.
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Abstract

Different procedures for considering the effects of topographic masses in Stokes-
Helmert scheme of geoid determination are reviewed. Classical integral formulae use a
planar approximation of the geoid and a limited area of integration, and thus account
only for the local contributions of topographic effects. In the other hand, the spherical
harmonic representation of the topographic effects normally only includes the long-
wavelength information. Another description of the effects of topographic masses
given by Martinec and Vańıc̆ek (1994a, b) uses near and far-zone integration areas
and a spherical approximation of the geoid. Finally, two formulae, that combine short
and long-wavelength contributions, are presented for topographical effects. These re-
cent formulae imply that the integral formulae for determining the topographic effects
may have some numerical problems in representing global information (for truncated
integration domain). On the other hand, a representation of the effects by a set of
spherical harmonic coefficients of the topography to, say, degree and order 360 leads to
omission of significant short-wavelength information. All above-mentioned procedures
were used for computation and comparisons in a test area in Iran with the maximum
elevation of 3053 m. The results of these comparisons show that the Martinec and
Vańıc̆ek (1994a, b) integral formulae and the recent combined formulae presented by
Sjöberg and Nahavandchi (1999) and Nahavandchi (2000) are in good agreement with
each other. These formulae use a spherical approximation of the geoid, contrary to
the classical formulae which use a planar approximation. Only the combined formulae
include, however, all wavelength constituents and are recommended for precise geoid
determination. Further, the gravimetric geoidal heights were computed applying these
different procedures of handling the topographic effects. The results were then com-
pared at Global Positioning System (GPS)-leveling stations in Iran. The standard
deviation of the fit with the combined formulae is the best among the other methods
and is equal to ±10.1 cm.
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Key words: Direct topographic effect, Indirect topographic effect, Geoidal height, Helmert
condensation

1 Introduction

The geoid is frequently determined from ground gravity data by the well-known Stokes
formula. This integral formula is the solution of an exterior type boundary value problem,
which implies that masses exterior to the geoid are not permitted in the formulation of
this problem. This is achieved mathematically by removing the effect of external masses
and replace them by the effect of additional masses below the geoid [direct topographic
effect (DTE) on gravity]. However, it should be noted that the DTE on gravity anomaly
equals the sum of the DTE on gravity and the so-called indirect effect of the topography
on gravity or the secondary indirect topographic effect (SITE) on the geoidal height.
Thereafter, as Helmert’s reduction is used, the corrected ground gravity anomaly (Helmert
anomaly) must be continued downward to the geoid (downward continuation) prior to
perform Stokes’s integration. The effect of removed masses is then restored after applying
Stokes’s integral [primary indirect topographic effect (PITE ) on the geoidal height]. These
procedure follows the principals described in Vańıc̆ek and Martinec (1994), Martinec (1998)
or Nahavandchi and Sjöberg (1998).

Recognizing that a valid solution to geoid determination would occur only if there
were no masses outside the geoid, Helmert suggested that the masses outside the geoid
could be condensed as a surface layer directly at the the reference sphere in a spherical
approximation of the geoid. In this study, Helmert’s second condensation method is used
that preserves the Earth mass, for which the Helmert model of the Earth has the same
mass as the real Earth. A discussion of some attributes of Helmert’s second method of
condensation may be found in Heiskanen and Moritz (1967), Wichiencharoen (1982), Heck
(1992), Martinec et al. (1993), Vańıc̆ek et al. (1995) and Nahavandchi and Sjöberg (1998).

Two different formulae for the remove-restore problem were presented by Moritz (1980)
and Vańıc̆ek and Kleusberg (1987). Moritz (1968, 1980) examined the role of the topogra-
phy to show a relationship between Helmert’s condensation reduction and the approximate
solution of the Molodenskij boundary value problem. He derived the DTE referred to the
geoid. Vańıc̆ek and Kleusberg (1987) derived the DTE referred to Earth’s surface, which
means that the ground gravity anomalies corrected with their formula still need a down-
ward continuation correction to be used in Stokes’s integral. These two classical formulae
are limited to the second power of elevation H and suffer from the planar approximation
of the geoid.

Sjöberg (1994) suggested a spherical harmonic representation of the topographic ef-
fects. This approach was implemented by Sjöberg (1995, 1996) to the second power of
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elevation H and by Nahavandchi and Sjöberg (1998) to the third power of elevation H ,
where the DTE was derived at the surface of the Earth, respectively.

Another description of the Stokes-Helmert method for geoid determination was given
by Vańıc̆ek and Martinec (1994). The specific problem of determining the DTE and the
PITE were treated by Martinec and Vańıc̆ek (1994a, b), who pointed out that the classical
formulae may severely be biased because of the planar approximation of the geoid in the
derivations.

Later, Nahavandchi (1998a, b), Sjöberg and Nahavandchi (1999), Sjöberg (2000) and
Nahavandchi (2000) argued that the DTE and the PITE were composed of both short
(local effects) and long-wavelength (global effects) contributions. This implies that the
integral formulae for determining the topographic effects (using a limited spherical cap
around computation points) may have some problems in representing the long-wavelength
contributions. On the other hand, a representation by the set of spherical harmonic
coefficients of the topography omits significant short-wavelength information, as in the
practice it is limited to a maximum degree of 360 in this study. They derived two formulae
for handling the DTE and the PITE with a combination of the integral formulae and the
set of spherical harmonic coefficients of Earth’s topography.

In this paper, all above-mentioned formulae for topographic effects will be computed
in the test area with maximum elevation of 3053 m. The differences will be compared and
discussed. Finally, the results of gravimetric geoid heights computed with different topo-
graphic effects will be compared to the geoidal heights derived at GPS-leveling stations.

2 Topographic effects in gravimetric geoid determination

The formulae used for topographic effects here are based on a constant topographic density.
These formulae can also be generalized to a laterally variable density simply by putting
it inside the surface integrals of the DTE and the PITE (see also Martinec 1998) . In
addition to topographic effects, geoid determination by Stokes’s formula also requires that
the gravity anomalies, ∆g, must refer to the geoid. For satisfying this condition, the
gravity anomalies available on Earth’s surface have to be reduced to the geoid. This
reduction is called a downward continuation.

The Stokes integration with the Helmert anomaly and considering the PITE on geoid
is realized by the formula (Heiskanen and Moritz 1967, p. 324)

N =
R

4πγ

∫∫

σ
S(ψ)∆gH∗

dσ + δN∗
I (1)

where N is the geoid height, ∆gH
∗

is the ground free-air gravity anomaly (∆g) corrected
for the DTE (resulting in Helmert’s anomaly ∆gH at the Earth’s surface) and then reduced
to the geoid (i.e., downward-continued to the geoid), γ is normal gravity, S(ψ) is Stokes’s
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function, ψ is the spherical distance between the computation and running points, σ is
the unit sphere, R is the mean radius of the Earth, and δN∗

I is the PITE on the geoid.
In this study, the Helmert second condensation method was used to remove the effect of
external masses and replace them by the effect of additional masses below the geoid. The
Helmert anomaly ∆gH at Earth’s surface can therefore be expressed via

∆gH = ∆g + δ∆gdir (2)

where ∆g is the ground free-air gravity anomaly and δ∆gdir is the DTE on gravity anomaly
determined at Earth’s surface. In this section, different formulae for correcting the ef-
fects of topographic masses in gravimetric geoid computations within the Stokes-Helmert
scheme are presented, and the downward continuation problem will be discussed in Sect.
3.

The SITE on the geoidal height is usually two orders of magnitude smaller than the
DTE. Nahavandchi (1998b) computed this effect at 23 GPS-leveling stations in Sweden
with the mean value of less than 0.7 cm. This term is neglected in this study. Also,
the geoid atmospheric effect (Sjöberg and Nahavandchi 2000) and other corrections to
Helmert’s anomalies on the Earth’s surface (see e.g. Vańıc̆ek et al. 1999), are not studied
here.

2.1 DTE to gravity anomaly

2.1.1 DTE with the classical integral formulae

Moritz (1980) derived a formula for the removing of the effect of topographic masses. This
correction should be added to the ground free-air gravity anomalies in Stokes’s formula.
This formula which uses the planar approximation of the geoid, is expressed as (Moritz
1980)

δ∆gM∗
dir (HP ) =

µR2

2

∫ ∫

σ

(H −HP )2

`30
dσ (3)

where µ=Gρ, G is the universal gravitational constant, ρ is the constant density of to-
pography, H and HP are the orthometric heights of the running and computation points,
respectively, and the spatial distance `0 = R

√
2(1− cosψ) = 2R sin ψ

2 .
The topographic effect δ∆gM∗

dir is related to the points on the geoid. This formula assumes
that the gravity anomalies in a downward continuation integral are linearly proportional
to the topographical heights according to the so-called Pellinen assumption (Moritz 1968,
1980). Hence, the resulting Moritz topographic effect also involves the effect of the down-
ward continuation of gravity anomalies. This effect is, however, described only approxi-
mately since the linear relationship between gravity anomalies and topographical heights
coresponds to the reality only roughly (see e.g. Heiskanen and Moritz 1967).
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Vańıc̆ek and Kleusberg (1987) approximated the geoid by a horizontal plane and the
constant topographic density ρ was also used in their derivations. Their formula for DTE
determination at the point P , at Earth’s surface, can be approximated as follows (Vańıc̆ek
and Kleusberg 1987)

δ∆gVK
dir (HP ) =

µR2

2

∫ ∫

σ

H2 −H2
P

`30
dσ (4)

In a strict sense, Eqs. (3) and (4) can only be used for the far-zone integration area,
where `0 � H , and the effect of the near zone and the Bouguer shell (which cannot
be derived in the planar model) are completely missing (Martinec and Vańıc̆ek 1994a;
Nahavandchi 2000). It should be mentioned that the power series of height H used in
the integration is limited to the second order. In addition, Eqs. (3) and (4) also suffer
from other approximations. The most important one is that the slope of the topography
must be within 45◦. This limitation was pointed out by, e.g., Heck (1992), Martinec and
Vańıc̆ek (1994a) and Sjöberg and Nahavandchi (1999).

The DTE used by Moritz (1980), and Vańıc̆ek and Kleusberg (1987) may significantly
be different. One notes that Eq. (3) is always a positive quantity while Eq. (4) may be both
positive and negative. Wang and Rapp (1990) and Nahavandchi (1998a) compared these
two methods. They obtained large differences in the DTE on gravity and geoid. These
differences are larger with complexity of the topography. They proposed that Vańıc̆ek
and Kleusberg’s free-air gravity anomaly should not be used in the Stokes formula. The
difference was also explained by Martinec et al. (1993) as being due to the fact that while
Vańıc̆ek and Kleusberg’s results refer to the Earth surface, Moritz’s results refer to the
geoid.

2.1.2 DTE represented by the spherical harmonic expansion

Sjöberg (1994, 1995) developed the DTE in spherical harmonics to power H2, and Naha-
vandchi and Sjöberg (1998) extended this approach to power H3. The DTE on gravity
with the spherical harmonic representation is (Nahavandchi and Sjöberg 1998)

δ∆gNS
dir(HP ) .=

πµ

2R

[
5H2

P + 3H2
p + 2

M ′∑

n,m

n(H2)nmYnm(P )
]

+
πµ

2R2

[
28
3
H3
P +

9
2
H2
PHP − 1

2
H3
P

+ HP

M ′∑

n,m

n(2n + 9)(H2)nmYnm(P )

− 1
3

M ′∑

n,m

n(2n+ 7)(H3)nmYnm(P )
]

(5)
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where Ynm are fully normalized spherical harmonics obeying the following rule

1
4π

∫∫

σ
YnmYn′m′dσ =

{
1 if n = n′ and m = m′

0 otherwise
(6)

and

(Hv)nm =
1
4π

∫∫

σ
Hv
PYnmdσ ; v = 2, 3, (7)

Hv
P =

M ′∑

n,m

(Hv)nmYnm(P ), (8)

Hv
P =

M ′∑

n,m

1
2n + 1

(Hv)nmYnm(P ). (9)

In Eq. (5), M ′ is the maximum degree and order of height coefficients in a spherical
harmonic expansion. Rewriting the formula in Eq. (5) for the point P at Earth’s surface
to the second power of elevation H , one obtains (Nahavandchi 2000)

δ∆gNS
dir(HP ) .=

−2πµ
R

M ′∑

n,m

(
R

r

)n+1 (n+ 2)(n+ 1)
2n+ 1

(H2)nmYnm(P ). (10)

These spherical harmonic representations [Eqs. (5) or (10)] of the DTE are simple for
practical computations. They are also free from the problems encountered in the inte-
gral formulae, such as the singularity at the computation point. However, the harmonic
expansion series of H2 (and H3) will only include the long-wavelength constitutents for
M ′ =360. To incorporate all significant contributions of both short and long-wavelength
constitutents, an expansion in spherical harmonics of H2 (and H3) to very high degrees
should be required, which is practically difficult and ruins the simplicity of this method.
Nahavandchi and Sjöberg (1998) showed that the dominant part of the power series in Eq.
(5) is the second power of elevation H . For example, the contribution from the harmonic
expansion series H3 on the geoid is within 9 cm in the Himalayas. Later, Nahavandchi
(1999) showed that the contribution from the harmonic expansion series H4 and H5 can
safely be neglected for M ′=360 (also see Sun and Sjöberg 2001).

2.1.3 DTE presented by the integral formula of Martinec and Vańıc̆ek (1994a)

The specific problem on determining the DTE was also treated by Martinec and Vańıc̆ek
(1994a), who pointed out that the classical formulae may severely be biased because of the
planar model of the geoid used in their derivations. To solve this problem, the spherical
approximation of the geoid was used, but the effect was still considered only locally as a
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result of a limited integration area. Martinec and Vańıc̆ek (1994a) divided the integration
area(full spatial angle) (σ) into a near zone (σ1) and a far zone (σ2) resulting in:

δ∆gMV
dir (HP ) = −4πµ

R
H2
p +

µR2

2

∫∫

σ1

H2
P −H2

`3

(
1 − 3H2

P

`2

)
dσ

+
µR2

2

∫∫

σ2

H2
P −H2

`3

(
1 − 3 sin2 ψ

2

)
dσ (11)

where the spatial distance ` =
√
r2 + R2 − 2rR cosψ).

The above formula produces a relative error of 3×10−3 for the spherical approximation
of the geoid, which in turn causes an error in geoidal heights of 6 mm at most. Also, a
planar approximation of distances (not to be confused with the planar approximation
of the geoid) is used in this formula which produces another error which is of the same
order of magnitude as the error of the spherical approximation of the geoid. This error
is acceptable for the precise determination of the regional geoid. Note that in Eq. (11) `
is used instead of `0 that is used in the classical integral formulae (3) and (4). Contrary
to Eqs. (3) and (4), the near-zone effect and the Bouguer shell are also included in this
formula. It is obvious that both of these effects are significant and must be considered in
precise geoid determination.

2.1.4 DTE with combination of an integral formula and the spherical har-
monic expansion

The spherical harmonic representations of the DTE [Eqs. (5) or (10)] are simple for
practical computations. However, the harmonic expansion series of H2 (and H3) will
include only the long-wavelength constitutents for M ′=360. On the other hand, integral
formulae are computed locally and include the short and in the most cases also the medium-
wavelength constitutents (depending on the cap size).

A combination of local contributions and long-wavelength information was firstly pro-
posed by Nahavandchi (1998a). Later, Nahavandchi (1998b), Sjöberg (2000) and Naha-
vandchi (2000) derived the direct gravitational effect of the topography at a topographic
surface point P to the second power of H with a combination of the integral formula and
the spherical harmonic expansion as (Nahavandchi 2000)

δ∆gnew
dir (HP ) = −4πµ

R
H2
p −

3µ
8

∫∫

σ

H2 −H2
P

`0
dσ

+
µR2

2

∫∫

σ

H2
P −H2

`3

(
1− 3H2

P

`2

)
dσ (12)

or

δ∆gnew
dir (HP ) = −5πµ

2R
H2
p −

3πµ
2R

H2
P +

µR2

2

∫∫

σ

H2
P −H2

`3

(
1 − 3H2

P

`2

)
dσ (13)
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Equation (13) uses the spherical model of the geoid and contrary to Eq. (11) can
include long-wavelength constituents (if Eq. (11) uses a limited integration area). The
effect of the Bouguer shell is also included. It is also free from the singularity problems
and topography limitations (Sect. 2.1.1) in classical integral formulae as it uses ` instead
of `0. The same relative errors as in Eq. (11) are produced in Eq. (13).

2.2 Primary indirect topographic effect

2.2.1 PITE with the classical integral formula

The classical formula for determining the PITE on the geoid for Helmert’s second conden-
sation method with mass preservation is (Wichiencharoen 1982)

δN classic∗
I (P ′) =

−πµH2
P ′

γ
− µR2

6γ

∫∫

σ

H3 −H3
P ′

`30
dσ (14)

with the same notations as before. This formula uses the planar approximation of the geoid
and assumes the constant topographic density. Martinec and Vańıc̆ek (1994b) and Sjöberg
and Nahavandchi (1999) showed that the PITE determined on the basis of the planar
approximation of the geoid differs significantly from that resulting from the spherical
model of the geoid. They obtained differences up to a 0.5 m.

2.2.2 PITE represented by the spherical harmonic expansion

The spherical harmonic representation of the PITE can be shown to the third power of
topographic height in the point P ′ on the geoid as (Nahavandchi and Sjöberg 1998)

δNNS∗
I (P ′) = −2πµ

γ

∞∑

n=0

n − 1
2n+ 1

H2
n(P

′) +
2πµ
3Rγ

∞∑

n=0

n(n− 1)
2n+ 1

H3
n(P

′) (15)

where

Hν
n(P ′) =

2n+ 1
4π

∫∫

σ
HνPn(cosψ)dσ; ν = 2, 3 (16)

where Pn(cosψ) is the Legendre polynomial. Again, this formula is very simple for prac-
tical computations but with the global height information available in this study, it rep-
resents only the long-wavelength constitutents.

2.2.3 PITE represented by the integral formula of Martinec and Vańıc̆ek

(1994b)

The PITE derived by Martinec and Vańıc̆ek (1994b) is based on the spherical approxima-
tion of the geoid. However, they considered this effect only locally as a result of a limited
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integration area (spherical cap). The PITE in the point P ′ on the geoid is (Martinec and
Vańıc̆ek 1994b)

δNMV∗
I (P ′) = −2πµ

γ
H2
P ′ +

µR2

γ

∫∫

σ

[
2
(`20 +H2)0.5 − (`20 +H2

P ′)0.5

R

+ ln
`0
2R +H + (`20 +H2)0.5
`0
2R +HP ′ + (`20 +H2

P ′)0.5
− H −HP ′

`0

]
dσ (17)

The spherical approximation of the geoid in this formula produces again an relative error
of 3×10−3 in the geoidal heights. On the other hand, a planar approximation of distances
is used in this formula which produces an error of the same order of magnitude as the
error due to the spherical approximation of the geoid.

2.2.4 PITE with combination of the integral formula and the spherical har-

monic expansion

The classical formula [Eq. (14)] is not practical for numerical evaluations, as it requires
an integration over surface of the whole Earth to include long-wavelength contributions.
It also suffers from the planar approximation of the geoid (Martinec and Vańıc̆ek 1994b,
Sjöberg and Nahavandchi 1999). On the other hand, the spherical harmonic representation
of the PITE [Eq. (15)] needs a very high maximum degree of expansion, to consider
all short-wavelength information. A suitable compromise may therefore be of the form
(Sjöberg and Nahavandchi 1999)

∆δNI(P ′) = δN classic∗
I − δNnew∗

I = −3πµ
γ
H2
P ′ −

3Rµ
4γ

×
∫∫

σ

H2 −H2
P ′

`0
dσ − µ

8γ

∫∫

σ

H3 −H3
P ′

`0
dσ (18)

or

δNnew∗
I = δN classic∗

I − ∆δNI (19)

where ∆δNI in spectral form is approximated as

∆δNI(P ′) = −3πµ
γ
H2
P ′ +

πµ

2Rγ
(H3

P ′ −H3
P ′) (20)

Equation (19) includes the integral part for short-wavelength constituents and the spherical
harmonic representation to consider the long-wavelength information. It produces the
same relative errors as Eq. (17).

3 Numerical investigations

3.1 Data sources

A test area of size 2◦ × 2◦ in Iran is chosen. It is limited by latitudes 31◦ N and 33◦ N
and longitudes 54◦ E and 56◦ E. The topography in this area varies from 785 to 3053
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Figure 1: Presentation of topography in the test area. Contour interval =100 m

metres, shown in Fig. 1. The height spherical harmonic coefficients (H2)nm and (H3)nm
are determined from Eqs. (7) and (8) using global topography. For this, a 30′×30′ Digital
Terrain Model (DTM) is generated by averaging the Geophysical Exploration Technology
(GETECH) 5′ × 5′ DTM (GETECH 1995a), using area weighting. Since the interest
is in continental elevation coefficients and one aims to evaluate the effect of the masses
above the geoid, the heights below sea level are all set to zero. The spherical harmonic
coefficients are computed to degree and order 360. The parametr µ = Gρ is computed
using G = 6.673 × 10−11m3 kg−1 s−2 and ρ = 2670 kg/m3. The values of R=6371 km,
and γ = 9.81 m/s2. are also used in computations. In all the integral equations in
this study a 2′ × 2′ DTM produced in National Cartographic Center of Iran is used. It
should be mentioned that this DTM is not adequate for computing the local contributions
of topographic effects in practice and only give an insight in the medium-wavelength
constituents. A denser DTM is in preparation. Height data in all integral equations are
extended to 6◦ from the computation point.

3.2 Computations of the DTE with different formulae

The DTE is computed in the test area with the classical integral formulae of Moritz (1980)
[Eq. (3)] and Vańıc̆ek and Kleusberg (1987) [Eq. (4)], the spherical harmonic formula of
Nahavandchi and Sjöberg (1998) [Eq. (5)], the integral formula of Martinec and Vańıc̆ek
(1994a) [Eq. (11)], and Nahavandchi (2000) combined formula [Eq. (13)]. Table 1 shows
the statistics of the results of the computations with the above-mentioned formulae. To
give further insight into the differences, the results of the computations of the DTE are
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Table 1: Statistics of the direct topographic effect on gravity with different formulae in
the test region in mGal.

Min Max Mean SD

Classical Moritz formula 0.28 6.46 0.97 0.72
Classical Vańıc̆ek and Kleusberg formula -33.61 8.05 0.004 5.11

Spherical harmonic approach of Nahavandchi and Sjöberg -2.53 3.10 0.01 1.33
Integral formula of Martinec and Vańıc̆ek -45.23 8.03 -0.71 6.96

Combined formula of Nahavandchi -27.90 7.48 0.13 4.72

plotted. Figures 2-6 depict the DTE obtained with the different formulae mentioned above.
Results in Table 1 and Figs. 2-6 show that different procedures for computation of the
DTE result in significant differences.

It should be noted that Fig. 5 [integral formula of Martinec and Vańıc̆ek (1994a)] and
Fig. 6 (combined formula) are similar in shape with minor differences in magnitude. The
absolute maximum difference of 5.71 mGal was computed for these two procedures. Figure
3 [classical integral formula of Vańıc̆ek and Kleusberg (1987)] is similar in shape with Figs.
5 and 6 but with larger differences in magnitude. The absolute maximum difference of
18.82 mGal was computed for the differences between the combined formula [Nahavandchi
(2000)] and the classical integral formula of Vańıc̆ek and Kleusberg (1987).

Of course, there are several reasons for these differences. For example, the Moritz
(1980) formula is not really comparable to the other expressions in this study as it contains
a combination of two different effects. This formula for DTE, however, will be used in
the next step of computaions, which is geoid height determination with different methods
of handling the topographic corrections. The Vańıc̆ek and Kleusberg’s (1987) DTE refers
to the point on Earth’s surface while the Moritz (1980) formula refers to the point on
the geoid, which justify the large differences between these two formulae. The spherical
harmonic representation of the DTE will include only the long-wavelength information
in this study (for M ′=360), and most of short-wavelength information, which is included
in the other formulae, is missing. This is the main reason for large differences between
this method and the other ones. Martinec and Vańıc̆ek (1994a) integral formula and
Nahavandchi (2000) combined formula for the DTE are in good agreement with each
other. These two formulae use the spherical approximation of the geoid, contrary to the
classical formulae which use the planar model. There are some minor differences between
these two formulae, however, which originate from the exclusion of some parts of the
long-wavelength constituents in Martinec and Vańıc̆ek (1994a) integral formula, which are
included in the combined formula.
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Figure 2: The direct topographic correction computed by the classical integral formula of
Moritz (1980). Contour interval = 0.5 mGal

Figure 3: The direct topographic correction computed by the classical integral formula of
Vanicek and Kleusberg (1987). Contour interval = 2 mGal
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Figure 4: The direct topographic correction computed by the spherical harmonic approach
of Nahavandchi and Sjoberg (1998). Contour interval = 0.5 mGal

Figure 5: The direct topographic correction computed by the integral l formula of martinec
and Vanicek (1994a). Contour interval = 2 mGal
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Figure 6: The direct topographic correction computed by the combined formula of Naha-
vandchi (2000). Contour interval = 2 mGal

Nahavandchi (2000) compared the combined formula [Eq. (13)] with the integral for-
mula of Martinec and Vańıc̆ek (1994a) in a test area in Sweden with the maximum elevation
of 1147 m. The maximum difference between these two formulae reached 2.31 µGal. In
that study, however, Martinec and Vańıc̆ek (1994a) formula was integrated up to 20◦ from
computation points using the GETECH 2.5′ × 2.5′ DTM (GETECH 1995b). Further out
the global 30′ × 30′ DTM (GETECH 1995a) was used. This justifies the belief that some
parts of the global information might be missing in the results from the integral formula
of Martinec and Vańıc̆ek (1994a)(depending to the cap size of integration area).

3.3 Computations of the PITE with different formulae

The PITE is computed in the test area with the classical integral formula [Eq. (14)], the
spherical harmonic formula of Nahavandchi and Sjöberg (1998) [Eq. (15)], the integral
formula of Martinec and Vańıc̆ek (1994b) [Eq. (17)], and Sjöberg and Nahavandchi (1999)
combined formula [Eq. (19)]. Table 2 shows the statistics of the results of the computations
with the above-mentioned formulae. Again, the results of the computations of the PITE
on the geoid height with the different formulae mentioned above are plotted. The results
are shown in Figs. 7-10. Table 2 and Figs. 7-10 present the differences between different
procedures for computation of the PITE. The same explanations as in case of the direct
topographic effect can be repeated here. Figure 9 [integral formula of Martinec and
Vańıc̆ek (1994b)] and Fig. 10 [combined formula of Sjöberg and Nahavandchi (1999)]
are similar in shape but with minor differences in magnitude. The absolute maximum
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Table 2: Statistics of the primary indirect topographic effect on the geoidal height with
different formulas in the test region in cm.

Min Max Mean SD

Classical integral formula -48.69 -3.68 -12.69 7.14
Spherical harmonic approach of Nahavandchi and Sjöberg -11.48 6.31 -0.04 4.35

Integral formula of Martinec and Vańıc̆ek -34.47 6.23 -0.83 6.29
Combined formula of Sjöberg and Nahavandchi -36.89 8.08 -0.91 7.11

Figure 7: The primary indirect topographic correction computed by the classical integral
formula . Contour interval = 3 cm
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Figure 8: The primary indirect topographic correction computed by the spherical harmonic
approach of Nahavandchi and Sjoberg (1998). Contour interval = 1 cm

Figure 9: The primary indirect topographic correction computed by the integral formula
of Martinec and Vanicek (1994b). Contour interval = 2 cm
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Figure 10: The primary indirect topographic correction computed by the combined for-
mula of Sjoberg and Nahavandchi (1999). Contour interval = 3 cm

difference of 4.94 cm is computed between these two methods. Figure 7 (classical integral
formula) is similar in shape with Figs. 9 and 10, but with larger differences. The absolute
maximum difference of 11.91 cm was computed between the classical and the combined
formulae.

While the classical integral formula suffers from the planar approximation of the geoid,
the Martinec and Vańıc̆ek (1994b) integral formula and Sjöberg and Nahavandchi (1999)
combined formula use the spherical model. The spherical harmonic representation of
the PITE only includes the long-wavelength constituents in this study due to the use of
M ′=360, while the other integral formulae only include the short-wavelength information
(due to the use of the integration area). Sjöberg and Nahavandchi (1999) combined formula
include both short and long-wavelength information, contrary to Martinec and Vańıc̆ek
(1994b) integral formula which only include the local contributions. But results from
these two formulae are in good agreement with each other in comparison with the other
methods. Sjöberg and Nahavandchi (1999) computed the differences between these two
formulae in the test area in Sweden with the maximum elevation of 1051 m. They obtained
the absolute maximum difference of 0.71 cm between these two formulae. It should be
noted, however, that the integral formula of Martinec and Vańıc̆ek (1994b) was integrated
up to 20◦ from computation points using the GETECH 2.5′×2.5′ DTM (GETECH 1995b).
The global 30′ × 30′ DTM (GETECH 1995a) was used outside the 20◦ cap. This again
justifies the belief that they might be some parts of the long-wavelength constituents,
which are missing in the integral formula of Martinec and Vańıc̆ek (1994b) ( due to the

17
Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



choice of integration area).
To see how the different formulae for the DTE and the PITE work in different test

areas, a flatter test area in Iran was chosen. The heights in this area vary from 625 to
1537 m. The same computations as above were carried out in this second test area. The
results of comparisons between different formulae were the same as in the first test area.
The differences were smaller and smoother, however, that shows the expected dependence
of the topographical effects on elevations.

3.4 Comparisons

In order to obtain further insight into how the methods differ, and which model is better
suited to describe the ”height reference surface” of the national height reference system, 7
GPS-leveling stations were used as an external source to obtain the geoid heights. These
stations belong to National Cartographic Center of Iran. The elevations of the GPS
stations vary from 1431 to 1798 m. The accuracy of the ellipsoidal heights (h) of these
stations is of the order of few centimetres. Iran is using the orthometric height system.
The GPS-leveling geoidal heights in these 7 stations are computed with the well known
formula

N
.= h−H. (21)

This formula is, however, only valid if orthometric height refers to the geoid where the
”height reference surface” normally does not coincide with the geoid, which is the case in
this study too. For the numerical investigation of different methods of handling the effects
of topographic masses, the gravimetric geoid heights at these 7 GPS-leveling stations
are also computed. Thereafter, the gravimetric results were compared with the GPS-
leveling geoid heights. This will help to understand which method of topographic effects
computations is better suited to describe the used ”height reference surface”.

For computing the gravimetric geoid heights, Stokes’s formula in Eq. (1) with the
least-squares modification of Stokes’s kernel is used according to Nahavandchi and Sjöberg
(2001a). Short-wavelength part of the geoid height was computed through Stokes’s integra-
tion up to 6◦ from computation points and long-to-medium-wavelength part was computed
from the global gravity geopotential model EGM96 (Lemoine et al. 1997). It is important
to notice, however, that the EGM96 is based on free-air gravity anomalies and the used
model here is Helmert’s second method of condensation. The differences are normally
very small but they might have larger values in mountainous areas. The terrestrial gravity
anomalies in Stokes’s integral are in 110′′ × 160′′ geographical cells and taken from Na-
tional Cartographic Center of Iran. The interested readers are referred to Nahavandchi
(1998b) and Nahavandchi and Sjöberg (2001a) for the procedures and formulae used in
the modification of Stokes’s formula.
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To compute the gravimetric geoid height with the Stokes-Helmert scheme for geoid
determination [see Eq. (1)], Helmert’s anomaly at the geoid (∆gH

∗
) is needed. The

Moritz’s (1980) DTE formula already includes the effect of the downward continuation to
the geoid, while Vańıc̆ek and Kleusberg’s (1987), Martinec and Vańıc̆ek’s (1994a), spherical
harmonic approach, and Nahavandchi’s (2000) DTE formulae refer to a point at the ground
level [see Eq. (2)]. Therefore, a downward continuation procedure must be implemented
in these methods to reduce the ∆gH from topography to the geoid resulting in ∆gH

∗
. The

Poisson integral formula with the same procedure carried out in Vańıc̆ek et al. (1996),
Nahavandchi (1998c) and Nahavandchi and Sjöberg (2001b) was used.

The modified Poisson formula can be written as (see e.g. Vańıc̆ek et al. 1996; Naha-
vandchi and Sjöberg 2001b)

∆gH =
R

4π

∫∫

σ0

∆gH
∗
KM (r, ψ,R,ψ0)dσ + δgT + ∆gHM (22)

where δgT is the truncation error, ∆gHM are the low-degree spherical harmonics of the
gravity anomaly, KM(r, ψ, R, ψ0) is the modified Poisson kernel and σ0 denotes the inte-
gration domain within a spherical cap of radius ψ0. The truncation error is minimized
following the Molodenskij technique to reduce potential errors coming from the employed
global gravity model. The minimization is carried out in the sense of minimizing the upper
bound of the absolute value of the truncation error by subtracting from Poisson’s kernel an
appropriately selected linear combination of spherical harmonic functions taken to degree
and order M . The interested reader is referred to Vańıc̆ek et al. (1996) and Nahavand-
chi and Sjöberg (2001b) for the complete explanation of the above-mentioned modified
Poisson formula to derive unknown ∆gH

∗
from given the Helmert gravity anomaly ∆gH .

Different formulae to determine the topographic effects and downward continuation
problem are catagorized in the following 5 procedures. The classical integral formulae
of Moritz with the DTE in Eq. (3) (which also includes the downward continuation
procedure) and the PITE in Eq. (14) is the first method. Second, the classical integral
formulae of Vańıc̆ek and Kleusberg with the DTE in Eq. (4) and downward continuation
procedure in Eq. (22) and the PITE in Eq. (14) are used. Thereafter, the spherical
harmonic approach was employed with the DTE in Eq. (5) and the downward continuation
procedure in Eq. (22) and the PITE in Eq. (15). The integral formulae of Martinec and
Vańıc̆ek with the DTE in Eq. (11) and the downward continuation procedure in Eq.
(22) and the PITE in Eq. (17) is the fourth method. Finally, the combined formulae
with the DTE in Eq. (13) and the downward continuation procedure of Eq. (22) and
the PITE in Eq. (19) are used. Thereafter, the gravimetric geoid heights (with different
correction procedures mentioned above) are computed at 7 GPS-leveling stations and the
statistics of differences between the gravimetric and the GPS-leveling geoid heights are
shown in Table 3. Table 3 shows that the gravimetric geoid heights agree better with the
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Table 3: Statistics of the differences between gravimetric and 7 GPS-leveling stations’
geoid heights with different procedures of handling the topographic corrections. Units in
metres.

Min Max Mean SD

Classical Moritz formulae -0.191 1.301 0.560 0.462
Classical Vańıc̆ek and Kleusberg formulae -0.202 1.292 0.583 0.421

Spherical harmonic approaches of Nahavandchi and Sjöberg -0.238 1.322 0.622 0.518
Integral formulae of Martinec and Vańıc̆ek -0.118 1.221 0.562 0.381

Combined formulae of Nahavandchi and Sjöberg -0.131 1.118 0.521 0.322

GPS-leveling geoid heights when the integral formulae of Martinec and Vańıc̆ek and the
combined formulae of Nahavandchi and Sjöberg are used, compared to the other methods,
with the latter formula as the best. This justifies the belief that the combined formulae
used in this study for handling the effects of topographic masses include all wavelengths
and are better suited to describe the height reference surfaces like the geoid.

In addition, a fitting process of the gravimetric and GPS-leveling geoid was conducted.
The geoid change ∆N can be written in geographical coordinates as (Heiskanen and Moritz
1967):

NGrav −NGPS = ∆N = cosφ cosλ∆X + cosφ sinλ∆Y + sinφ∆Z + kR (23)

where φ and λ are the geographical coordinates, ∆X , ∆Y , ∆Z are the three translations
and k is the scale factor. Equation (23) represents a very useful regression formula,
which can be used for fitting a regional gravimetric geoid to the GPS-leveling stations.
Table 4 shows the statistics of the differences, after fitting, between gravimetric and GPS-
leveling geoid. Results of Table 4 shows that, after regression, the gravimetric geoid heights
computed with the topographic effects of the combined formulae of Nahavandchi and
Sjöberg still improve the fit of the gravimetric geoid to GPS-leveling stations, significantly.
The standard deviation of the fit after regression with this method is computed as ±10.1
cm compared to ±12.3 cm with the integral formulae of Martinec and Vańıc̆ek, the second
best method among the other methods. It should be mentioned, however, that these
computations should be carried out in test areas with more available GPS-leveling stations.

4 Discussion and conclusions

The DTE and the PITE with different methods and different approximations are dis-
cussed. Classical integral formulae use the planar approximation of the geoid while the
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Table 4: Statistics of the differences between GPS-leveling and gravimetric geoid heights
with different procedures of handling the topographic corrections after fitting to 7 GPS
stations. Units in metres.

Min Max Mean SD

Classical Moritz formulae -0.514 0.435 0.000 0.192
Classical Vańıc̆ek and Kleusberg formulae -0.483 0.466 0.000 0.181

Spherical harmonic approaches of Nahavandchi and Sjöberg -0.557 0.429 0.000 0.238
Integral formulae of Martinec and Vańıc̆ek -0.361 0.281 0.000 0.123

Combined formulae of Nahavandchi and Sjöberg -0.252 0.312 0.000 0.101

recent formulae use the spherical approximation of the geoid. The spherical harmonic rep-
resentation of the topographic effects only include the long-wavelength information with
available maximum degree M ′=360 used in this study, while pure integral formulae only
include the local contributions depending on the integration area. The combined formulae
of the PITE and the DTE derived by Sjöberg and Nahavandchi (1999) and Nahavandchi
(2000), respectively, include all the significant information. As the important part of the
topographic effects are the local contributions, the results of these formulae are in good
agreement with the Martinec and Vańıc̆ek (1994a, b) integral formulae, which also use the
spherical model of the geoid, but do not include the whole long-wavelength contributions.
It can be stated that the combined formulae model better the long-wavelength constituents
with respect to the procedure described in Martinec and Vańıc̆ek (1994a, b). It should be
noted that the above-mentioned results should also be tested in other test areas.

The aim of this study was to show the differences between different procedures of
handling the effect of topographic masses in precise geoid determination. It is shown that
significant differences between different methods exist, which were expected. It is also con-
cluded that the effects of distant topographic masses can not be neglected in precise geoid
computations. It means that the long-wavelength contributions of these effects, which
are included in the combined formulae, represent better the reality. To justify this belief,
geoidal heights were computed applying different topographic effects. The gravimetric
geoid heights were then compared with the 7 GPS-leveling geoid heights. The results of
these comparisons prove the belief that the gravimetric geoid height computations cor-
rected for topographic effects with the combined formulae work better with GPS-leveling
data. The standard deviation of the fit (after the regression procedures) is determined to
be equal to ±10.1 cm for the topographic effects of combined formulae, while it is equal to
±19.2 cm for the classical method. Finally, the use of the combined formulae of DTE [Eq.
(13)] and PITE [ Eq. (19)] are suggested for a precise geoid determination. The results
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of gravimetric geoid height comparisons with GPS-leveling height data over Sweden also
recommended the use of the combined formulae (Nahavandchi and Sjöberg 2001a, b).
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Introduction

The estimate of a high precision quasi-geoid is nowadays a relevant goal in Geodesy, since
from this surface can be derived the geoid. As it is well known, the geoid, i.e. the equipotential
surface of the Earth gravity field which is close to the mean ocean surface, can be used in
combination with GPS observations to estimate orthometric heights. This is of particular relevance,
since this can be done in a faster and cheaper way than using spirit leveling, although with lower
precision (which is however sufficient in many practical applications). In 1996, the last estimate of
the Belgium quasi-geoid BG96 was computed with the Stokes and the least square collocation
methods (Pâquet et al 1997). This quasi-geoid has a precision of 3 to 4 cm in the area well covered
by gravity data , which was assessed through comparison with GPS/leveling derived undulations
with 36 BEREF points. Since now the gravity coverage of Belgium is completed a higher precision
for the geoid could be reached  for the south-eastern part and in the northern part of the country.

In this paper, a new estimate of the Belgium quasi-geoid (BG03) is presented. The main
improvements with respect to the previous computation are related to gravity data coverage, DTM
refinements and new global geopotential models. So, this estimate can be considered a significant
step forward in quasi-geoid computation for this area and a basis for a future estimate which will be
obtained by merging gravity and GPS/leveling data.

1. Gravity data, DTM and global geopotential models

The gravity date base used in this computation has been sharply improved with respect to the
previous one. Furthermore, a new DTM has been prepared including bathymetry. The details related
to these new data sets will be discussed in the following together with a description of the
geopotential models used to represent the low frequency part of the geopotential field.

1.1 The gravity data set

A first determination of the gravity value in Uccle (ROB) was obtained in 1894 with the help of a
pendulum. A first belgian gravity Network with 24 stations was successfully observed in 1928 with
an internal error ranging from 1 to 3 mGal. In the years 1947-48 a second gravity survey of the
country was performed including 381 stations to cover a territory of 30 000km2. The precision was
everywhere better than 0.7 mGal. Since 1948 The National Geographic Institute (NGI) and the
Royal Observatory (ROB) worked in close co-operation to densify the gravity coverage of
Belgium. This goal was finally reached  in 2002. The density of the coverage is lower in the south-
eastern part of the country (1 station per 2.5 km² to 1 per 5 km²) but it reaches 1 station per km² on
the rest of the territory. The data base of the ROB holds more than 250 000 gravity measurements
for Belgium and the surrounding countries. All these gravity values were include in BG03. The
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precision is everywhere better than 0.1 mGal.  There are more than 30 000 data on the Belgian
territory itself. The rest of the data were provided by the BRGM for France, the  BGS for Great
Britain, the Rijkswaterstaat  for the Netherlands, and Wenzel H.G. (personal communication) for
Germany. All those data have been carefully validated. All networks are referenced to the gravity
datum of  Uccle 1976, (Poitevin 1980).

1.2 The Digital Terrain Model

In the framework of this computation, a new DTM has been set up to properly compute the terrain
effect. In Belgium the DTM has been provided by the NGI with a resolution of 3'×6'. For the
surrounding territories in the window

38° ≤ ϕ ≤ 54°          -6° ≤ λ ≤ 13°

an homogeneous 4 km grid was obtained by integrating the land data of the WEEG Project
(Fairhead, 1994) with the 5’ NOAA bathymetry in the same area.
The DTMs were merged using bilinear interpolation to produce a unique DTM with spacing
∆ϕ=2.5’ and ∆λ=3’ and boundaries

 47.5° ≤ ϕ ≤ 53.5°          0° ≤ λ ≤ 8°

In this way, the estimated DTM is known over an area that is one degree larger than the one
corresponding to the gravity data.
The plot of this DTM is shown in fig.1

Figure 1 – The DTM in the computation area

1.3 The global geopotential models

Since the previous estimate of the quasi-geoid in Belgium, which was based on OSU91A, two
new geopotential models have been made available: EGM96, complete up to degree 360, (Lemoine

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



77

et al, 1998; IGeS Bulletin, 1997) and the high resolution model GPM98CR by Wenzel, complete up
to degree 720, (Wenzel, 1998). The plots of the gravity anomaly implied by the two more recent
models and by OSU91A, bounded to the computation area, are shown in fig 2.

Figure 2a - The OSU91A gravity anomaly

Figure 2b - The EGM96 Gravity anomaly

Figure 2c - The GPM98CR gravity anomaly

As one can see, ∆g(OSU91A) and ∆g(EGM96) are quite similar while ∆g(GPM98CR) displays a
rougher structure. The same consideration holds for the model undulations which are plotted in fig
3.
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Figure 3a - The OSU91A undulation

Figure 3b - The EGM96 undulation

Figure 3c - The GPM98CR undulation

It is quite obvious that OSU91A is close to EGM96 since they have been computed following a
similar approach and to the same degree n=360. On the contrary, the Wenzel GPM98CR model is
derived following a quite different method and thus differences are expected with respect to
OSU91A and EGM96. Furthermore, this model is complete up to degree 720 and it comes from a
model which is complete up to degree 1800. Hence, discrepancies in the high frequency content
with respect to 360 models are expected too.
Both the geopotential EGM96 model and the GPM98CR model have been used in computing the
Belgium quasi-geoid: so, in the end, different estimates will be available to be tested against
GPS/leveling data.
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2. Estimation procedures and results.

The numerical results related to the estimation procedures are given in the following paragraphs.
The classical “remove-restore” (Tscherning, 1994) procedure has been used and the residual quasi-
geoid components have been evaluated using the Fast Collocation approach (Bottoni and Barzaghi,
1993) and the FFT technique (Sideris, 1994).

2.1 Quasi-geoid computation and results based on EGM96

The computation of the quasi-geoid named B_EGM96, based on the EGM96 global model,
has been carried out on a regular 1' x 1' grid in the area

48.5° ≤ ϕ ≤ 52.5°          1° ≤ λ ≤ 7°
With respect to the geopotential model EGM96, the reference DTM for Residual Terrain

Correction (RTC) computation has been computed using 25' window size moving average on the
detailed  DTM. The 25' window size has been tuned on the statistical properties of the residuals
with respect to EGM96 model.

RTC has been computed up to 80 km from each computation point both in the gravity and in
the quasi-geoid components. Statistics of the “remove” step are listed in tab.1.

Point gravity values have been then gridded on a regular 1' x 1' geographical grid. GEOGRID
program of the GRAVSOFT package (Tscherning et al., 1994) was used for such a step: statistics of
the residual gridded gravity values gG

r∆  are shown in tab. 1. The empirical covariance of these
values and the best fit model, obtained using the COVFIT program (GRAVSOFT), are represented
in fig. 4.

As one can see, a satisfactory fit between the empirical values and the model covariance is
reached basically up to the first zero. The best fit model, in terms of anomalous potential T(P), has
the following general form (Tscherning and Rapp, 1974)
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Figure 4 - Empirical and model covariance function of the gridded gravity residuals obtained with
the global geopotential model EGM96

∆g0

[mGal]

∆g0 - ∆gM

[mGal]

∆gr

[mGal]

∆gr
G

       [mGal]        
   

n 43361 43361 43361 87001

E -1.21 -1.75 -1.78 -1.54

σ 13.69 7.40 6.31 5.27

min -39.07 -37.25 -37.78 -25.23

max 64.16 36.88 27.87 22.63

Table 1 - Statistics of the "remove" step using the EGM96 geopotential model.

∆g0: observed gravity values (free air) ∆gM: gravity geopotential model component
Artc :gravity terrain correction component ∆gr = ∆g0 - ∆gM -Artc   gravity residuals
∆gr

G: gridded gravity residuals

The Fast Collocation (FC) solution giving ζr has been computed on the same 1'x1' grid used for
∆gr

G.
Furthermore, the FFT estimate of ζr was also computed to compare the two estimation methods.
The "restore" step was then accomplished: the ζrtc and the ζM component have been added to ζr, thus
getting the final quasi-geoid estimate B_EGM96. In tab.2 the statistics of the "restore" step are
summarized
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ζr (FC)

[m]

ζr (FFT)

[m]

ζM (EGM96)

[m]

ζRTC

[m]

ζ=ζr (FC)+ζM+ζRTC

[m]

n 87001 87001 87001 87001 87001

E -0.24 -0.37 45.83 0.02 45.61

σ 0.15 0.14 1.35 0.09 1.31

min -0.58 -0.71 43.28 -0.18 43.16

max 0.08 -0.04 49.33 0.51 49.35

Table 2 - Statistics of the "restore" step using the EGM96 geopotential model

ζr    : residual quasi-geoid
ζM  : quasi-geoid geopotential model component
ζrtc :quasi-geoid terrain correction component
ζ    : total quasi-geoid

As one can see, the FC estimate and the FFT solution are practically equivalent but for a bias of
0.13 m. Furthermore, as it is well known, the geopotential model gives nearly the whole quasi-geoid
signal, especially in this computation area where no relevant topography and geophysical signals
are present.

2.3 Quasi-geoid computation and results based on GPM98CR

In this case, the high resolution geopotential model GPM98CR by Wenzel has been used up
to degree 720 to get the B_GPM98CR estimate.

Also in this case, the steps described in the B_EGM96 computation have been performed. The
reference DTM in RTC computation was derived by applying a 5’ window size moving average on
the detailed DTM. As expected, the reference DTM used in this computation differs from the one
used in combination with the EGM96 model. Higher frequencies are taken into account when using
the GPM98CR geopotential model and so the reference DTM must contain higher frequencies too

Statistics of this “remove” step are given in tab. 3. As done before, residual gravity values
have been gridded on a 1’×1’ regular geographical grid covering the same area used in the EGM96
based computation (their statistics are listed in tab. 3). The empirical covariance and the best fit
model, which belongs to the same kind of function in (1), are shown in fig. 5
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Figure 5 - Empirical and model covariance function of the gridded gravity residuals obtained with
the global geopotential model GPM98CR

The empirical covariance is more irregular if compared with the EGM96 empirical covariance but
its value in the origin is remarkably smaller that the one obtained for that empirical covariance. This
means that the GPM98CR model and the related RTC reduction can give a better representation of
the local gravity data than EGM96 (this can be seen also in the statistics of the gravity residuals –
compare tab. 1 and tab. 3)
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σ 13.69 5.00 4.58 3.49

Min -39.07 -33.93 -32.94 -19.55

Max 64.16 28.08 21.96 12.63

Table 3 - Statistics of the "remove" step using the GPM98CR geopotential model.

∆g0: observed gravity values (free air) ∆gM: gravity geopotential model component
Artc :gravity terrain correction component ∆gr = ∆g0 - ∆gM -Artc   gravity residuals
∆gr

G: gridded gravity residuals
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As in the previous estimates, Fast Collocation and FFT were applied for computing ζr  on the 1'x1'
regular grid used for ∆gr

G  evaluation. The statistics of the "restore" step related to the B_
GPM98CR quasi-geoid are presented in tab. 4.

ζr (FC)

[m]

ζr (FFT)

[m]

ζM (GPM98CR)

[m]

ζRTC

[m]

ζ=ζr (FC)+ζM+ζRTC

[m]

n 87001 87001 87001 87001 87001

E -0.25 -0.38 45.83 0.02 45.60

σ 0.12 0.11 1.35 0.03 1.31

min -0.52 -0.64 43.22 -0.80 43.17

max 0.17 -0.03 49.62 0.18 49.43

Table 4 - Statistics of the "restore" step using the GPM98CR geopotential model
ζr    : residual quasi-geoid
ζM  : quasi-geoid geopotential model component
ζrtc :quasi-geoid terrain correction component
ζ    : total quasi-geoid

Also for this estimate, the same remarks done for the EGM96 based computation hold.

3. Comparisons with GPS/leveling derived undulations

The two gravimetric quasi-geoid estimates have been compared on 36 points with GPS
derived undulations. In these 36 double points, both h (ellipsoidal height)  and H (orthometric
height) are known so that NGPS/lev = h-H can be computed. Thus, the NGPS/lev values can be
compared with the gravimetric estimate to asses its precision. To properly perform the comparison,
a datum shift between the gravimetric quasi-geoid estimates and the N GPS/lev  must be computed to
reduce the data to the same reference system. While N GPS/lev is in the GPS reference system, ζ
computed with the “remove-restore”  method is in the reference system implied by the global
geopotential model.

To this aim, the following formula, which accounts for a translation based datum shift in
terms of geoid undulation, has been considered (Heiskanen and Moritz, 1990):

θλθλθ

λθ

coscos          

),(

/

/

dzsindysindxsinN

NNN

levGPS

levGPSgrav

+++=

=∆+=
 (2)

(dx,dy,dz) = translation between GPS and geoid reference systems
θ= 90-φ

(we remark that only translation is considered in this relationship between the two reference
systems).

In (2), we also assume that Ngrav ~ ζ, being ζ the quantity which is effectively estimated: this
can induce distorsions and perturbations specially in high mountain areas. However, for a first
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4. Comparison between BG96 and BG03

The fig 7 shows the comparison between BG96 and BG03. In this figure, there is a clear North-
South strong gradient at 4.5° of longitude. This anomaly existing only in BG96 is related to the fact
that the gravity coverage East of this line was very poor at that time, so that in BG96 the data to the
East and to the West of this line were considered as two different data sets. This figure shows also
the area improved by BG03. We see clearly large differences up to 4 cm  in eastern part  between
4.5° and 5.5° longitude and 50° and 50.5° latitude. It is mainly due to the improved gravity
coverage. Surprisingly in the South of Belgium the difference between BG96 and BG03 is rather
small although the previous gravity coverage was sparse. It is probably due to the fact that in this
area most of the signal comes from the DTM. There is of course  a very big difference in the south
eastern part in 49.5° latitude and 5.8° longitude which is due to the very bad GPS-leveled point in
Arlon. It is only in the new of  BG03 computation that we could consider this point as an outlier, as
this area is now well covered with gravity data. Large changes in the extreme West of the country
are probably due to the use of bathymetry data on sea and a better gravity coverage on land in this
area.
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Figure 7 - Comparison between BG96 and BG03 (contour in m)

5. High frequency content of BG03.

Since the gravity coverage is now completed in Belgium, It is interesting to know the areas where
the contribution of gravity is more important than the one due to topography. We have thus filtered
out from BG03 the low frequency signals. In fig. 8 it can bee seen that, North of 50.5° latitude,
where the area is flat, we find back anomalies mainly due to gravity, while South of that line the
geoid undulations are mainly due to topography especially in the Eastern part of the country where
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the highest altitudes are located. We have clearly found back the two main geological units of
Belgium, in the North the eroded lower paleozoic and the typical Bouguer anomalies associated to it
and in the South the upper paleozoic not yet eroded, where the topography produces the main part
of the signal. Let us point out the Flanders anomalies, the EW gravity gradient at the Southern
border of the Brabant massif, the Mons basin, the Famennes depression and the main axis of the
Ardennes massif.
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Figure 8 - High frequency content of BG03(contour in m).

6. Conclusions and perspectives

The new quasi-geoid estimate in Belgium is a step forward toward a high precision geoid
computation in this area. An improvement has been reached with respect to the previous BG96
solution. This is mainly due to new gravity data, that improved the gravity coverage, more accurate
global geopotential models (EGM96 and GPM98CR) and an updated DTM.
Two different techniques, namely FastCollocation and FFT, have been adopted to estimate the
residual quasi-geoid component. The obtained results show that, at least for this computation area,
the two method are completely equivalent.
The comparisons with NGPS/lev values show that a very good agreement has been reached and prove
the obtained refinements in the estimates.
The high frequency content of BG03 is closely connected with the known topographic and
geological structures of the Belgian territory.
However, we believe that some efforts must be done to improve the procedure that we adopted to
get these solutions.
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Particularly, a more detailed DTM should be used to compute a more reliable RTC effect in order to
get an homogeneous and isotropic ∆gr field.
Furthermore, the reduction term to transform quasi-geoid into geoid undulations should be also
computed to properly compare the gravimetric estimate with NGPS/lev  data. Finally, ellipsoidal
corrections should be accounted for, although they are more or less constant in the computation
window.
It must also be stressed that, in the near future, an integrated quasi-geoid estimate based on gravity
and a denser NGPS/lev data set will be computed in the same area.

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



88

References

Bottoni, G. and Barzaghi, R. (1993) - Fast Collocation - Bulletin Géodésique, Vol. 67, No. 2, pp.
119-126.

Fairhead 1994 confidential report on the West east Gravity project GETECH (Leeds University)

Heisknen, W.A., Moritz, H. (1990) - Physical Geodesy - Institute of Physical Geodesy Technical
University, Graz, Austria.

Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M.,
Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp,
R.H., Olson, T.R. (1998) - The development of the joint NASA GSFC and the National Imaginery
and Mapping Agency (NIMA) geopotential model EGM96 -  NASA Report TP-1998-206861,
Goddard Space Flight Center.

The Earth Gravity Model EGM96: testing procedures at IGeS (1997) - IGeS, Bulletin No. 6,
DIIAR, Politecnico di Milano, Italy

Pâquet Z. Jiang and Everaerts  M. (1997) A new belgian geoid Determination BG96 International
Association of Geodesy vol 117  pp 605- 612

Poitevin (1980) – First order gravity points in Belgium Internal report, Royal Observatory of
Belgium

Sideris M.G. (1994) – Geoid determination by FFT techniques - Lectures Notes of the International
School for the Determination and Use of the Geoid. IGeS, DIIAR, Politecnico di Milano.

Tscherning, C.C., Rapp, R.H. (1974) - Closed Covariance Expressions for Gravity Anomalies
Geoid Undulations, and the Deflections of the Vertical Implied by Anomaly Degree-Variance
Models - Reports of the Department of Geodetic Science, No. 208, The Ohio State University,
Columbus, Ohio, 1974.

Tscherning, C.C., P. Knudsen and R. Forsberg (1994) - Description of the GRAVSOFT package -
Geophysical Institute, University of Copenhagen, Technical Report, 1991, 2. Ed. 1992, 3. Ed. 1993,
4. Ed. 1994.

Tscherning, C.C. (1994) - Geoid determination by least-squares collocation using GRAVSOFT -
Lectures Notes of the International School for the Determination and Use of the Geoid. IGeS,
DIIAR, Politecnico di Milano.

Wenzel, G. (1998) - Ultra high degree geopotential models GPM98A, B and C to degree 1800 -
Submitted to Proceedings Joint Meeting of the International Gravity Commission and International
Geoid Commission, September 7 -12, Trieste 1998. Bollettino di Geofisica teorica ed applicata.

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



II Section: "Communications and News"

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



89

Geoid and Ocean Circulation in the North Atlantic
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Summary

The overall aim of the GOCINA project is to enhance European capacity in Earth observation
technologies. This is done by promoting and developing methods for the joint exploitation of
the approved European Space Agency ENVISAT and GOCE missions for ocean circulation
studies, associated climate modelling and operational data assimilation.

A major task is to determine an accurate geoid in the region between Greenland and the UK
and, thereby, create a platform for validation of future GOCE Level 2 data and higher order
scientific products. The new and accurate geoid is used together with an accurate mean sea
surface to determine the mean dynamic topography. The mean dynamic topography is used
for improved analysis of the ocean circulation and transport through the straits between
Greenland and the UK.

GOCINA will develop generic tools to enhance ocean analysis using Earth observation data
from ENVISAT and GOCE. The project will examine the mass and heat exchange across the
Greenland-Scotland Ridge. This analysis will give invaluable information on the ocean role in
climate. The project will in particular support the GOCE mission with a set of specific
recommendation for integrating GOCE in ocean circulation studies and an accurate geoid
model for validation purposes.

GOCINA is a shared cost project (contract EVG1-CT-2002-00077) co-funded by the
Research DG of the European Commission within the RTD activities of a generic nature of
the Environment and Sustainable Development sub-programme of the 5th Framework
Programme.

Figure 1. GOCINA study region focusing on the
straits between Scotland and Greenland.

Newton's Bulletin - n°1, Dec. 2003 - ISSN 1810-8555



90

Background and motivation

The ocean transport through the straits between Greenland and the UK is known to play an
important role in the global circulation as well as on the climate in Northern Europe. Warm
Gulf Stream water flows into the Nordic seas and feeds the formation of heavy, cold bottom
water that returns back into the Atlantic Ocean.  

Increasing temperatures at high latitudes may cause changes in the distribution of ice in
glaciers and ice caps. The amount of fresh melt water running into the oceans may change.
Furthermore, changes in the distribution of sea ice may cause changes in the formation of
heavy, cold bottom water. Both phenomena may have an impact on the ocean circulation.  

It is very possible that as global warming takes hold, the climate of Northern Europe will
buck the trend and become cooler. A weakening of the warm Gulf Stream would collapse the
Northward heat transport between Europe and Greenland by the mean ocean circulation and
cooling the Northern Europe. Furthermore, changes in the mean flows and transports in deep
waters may change ocean upwelling and transports of larvae, both relevant for fish
populations.

The European investment in Earth observing satellites has been significant. It is therefore of
great importance that the value and utilization of this extensive provision of space borne data
can be properly demonstrated in the context of ocean monitoring. 

Scientific Objectives

GOCINA will advance the European capabilities in exploitation of EO data from forthcoming
satellite missions, especially ENVISAT RA and GOCE, for ocean analysis of mass and heat
transport, through the following specific objectives: 

The central quantity bridging the geoid and the ocean circulation is the mean dynamic
topography (MDT), which is the difference between the mean sea surface (MSS) and the
geoid. The MDT provides the absolute reference surface for the ocean circulation and is, in
particular, expected to improve the determination of the mean ocean circulation. The
determination of the mean circulation will, in turn, advance the understanding of the role of
the ocean mass and heat transport in climate change.

Up to the expected launch of GOCE in 2005 the gravimetric geoid is not known with
sufficient accuracy to allow full use of the massive sea surface height information which
several satellite altimetry missions have regularly provided since the early 90´ies, in global
analysis of the ocean circulation. However, in a few marine regions in the world sufficient in-
situ information about the Earths gravity field exists to compute a more accurate geoid. The
region covering the Northern North Atlantic and the Nordic seas between Greenland, Iceland,
Norway and the UK is one of those regions.

A major goal of this proposal is therefore to determine an accurate geoid in the region
between Greenland and the UK and, thereby, create a platform for validation of future GOCE
Level 2 data and higher order scientific products.
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Another major goal of this proposal is to use the new and accurate geoid for improved
analysis of the ocean circulation. The ocean transport through the straits between Greenland
and the UK is known to play an important role in the global circulation. Gulf Stream water
flows into the Nordic seas and feeds the formation of heavy bottom water that returns back
into the Atlantic Ocean. Recent results have shown that changes in this bottom water transport
may cause the inflow of Gulf Stream water to slow down or change into another stable
circulation mode over a few decades. Such a change of the Gulf Stream with even a possible
shut down of the heat transport towards high latitudes would have a huge impact on the North
European climate. By analysing the best possible geoid in this region using currently available
data we will be able to determine the extent to which GOCE data will improve the measuring
and monitoring of ocean transports in this vital region.

GOCINA will advance the European capabilities in exploitation of EO data from forthcoming
satellite missions, especially ENVISAT RA and GOCE, for ocean analysis of mass and heat
transport, through the following specific objectives.

Objective 1: To determine a regional high accuracy gravimetric geoid.

An air-borne gravity survey will be made in the straits between Greenland, Iceland, the
Faeroe Islands, and the UK to complete the coverage of existing gravity data and to establish
an additional control of the ship-borne gravity data. Biases in the individual surveys can be
detected in the cross-over analysis merging the data from the different sources. The
gravimetric geoid and its error characteristics will be computed using state of the art
methodology taking both marine and land gravity data into account as well as topographic
data. Available data from the new satellite missions CHAMP and GRACE will be considered
to enhance the long wavelength parts of the geoid.

Objective 2: To determine a regional high accuracy mean sea surface.

Satellite altimetry from ERS and TOPEX/POSEIDON for the period 1993-2002 will be
collected and merged for this task. Furthermore, existing high-resolution global mean sea
surfaces (MSS) for the study region will be compared. The quality of the MSS in the study
region will also be evaluated through comparison with the altimeter data. Furthermore, the
role of the inverted barometer correction will be evaluated. Based on the results of this
analysis an optimal high-resolution MSS and its error characteristics will be computed. Later
in the project an accurate MSS for 2003 will be computed  using data from ENVISAT and
JASON-1.

Objective 3: To determine a regional best possible mean dynamic topography using in-situ
hydrographic data and ocean modelling.

In-situ climatology, e.g., the Levitus data, will be used in the determination of the mean
dynamic topography (MDT). In addition recent hydrographic data will be used for computing
an MDT, both in combination with altimetry and involving the use of ocean general
circulation models OGCMs. Two different OGCMs and different strategies for assimilation of
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hydrographical data will be used for determining several MDT models over particular
periods.

Objective 4: To provide detailed assessment of the geoid, the MSS, and the MDT.

To assess the initial models residuals between the models are analysed. Furthermore, the
MDT models will be compared with other in-situ data from tide gauges and current meter
measurement. Residuals between the computed MSS and the sum of the computed geoid and
MDT form the valuable basis for assessment and validation of the derived models. By
comparing the residuals with the respective error characteristics, the accuracies of the
products will be assessed. The validation will be carried out in different local areas as well as
in the spectral domain. The analyses will result in modified error characteristics, which will
provide the needed information for the further improvements by iterating on the methods used
in WP1, 2, and 3.

Objective 5: To integrate the three techniques for improved (optimal) estimation of the
geoid and the MDT.

Integrated techniques that consider all three quantities concurrently, and take their respective
error characteristics into account will give optimal estimates of the geoid and the MDT.
Especially, in regions with sparse data coverage the integrated techniques will show their
strength. The optimal estimation technique based on generalised inversion that allows a full
integration of data of different kinds taking the full signal and error covariance relations into
account, and the less demanding on computational resources technique that is based on
iterative transformation and weighted combination of component data streams will be used.
Also new techniques of data assimilation and geoid inversion will be evaluated for calculating
the best possible local solution.
The resulting best MDT will be used in the further analysis the ocean circulation. The geoid
will be used to compute gravity field components and their errors at the heights of the GOCE
satellite. Finally, the error characteristics of GOCE will be used to investigate the integration
of GOCE data into the estimation of the geoid and the MDT.

Objective 6: To investigate the impact of the improved MDT on the ocean circulation
estimation.

The assimilation methods used in the OGCMs will be modified to allow the assimilation of
the best MDT. Sensitivity studies will be performed to assess the impact of assimilation of
MDT data on ocean circulation and mass and heat transports. A further exploration of the new
and more precise estimates of the MDT will be carried out to examine if they can be used to
improve the predictability of seasonal to inter-annual variability of the Northeast Atlantic and
Nordic Seas and in particular the variability related to the North Atlantic Oscillation (NAO)
Index. The impact on forecasting is investigated by examining the sensitivity of the
forecasting anomalies to the new and more accurate mean dynamic topography.  This method
will therefore also enable the simulation of the precise GOCE derived geoid on forecasting
capabilities.

The experiments will examine the mass and heat exchange across the Greenland-Scotland
Ridge, considering the Atlantic inflow, the surface outflow in the East Greenland Current, and
the overflows. Also the impact on the current running along the continental shelf from the
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Bay of Biscay to the northern Norwegian Sea will be analysed. Finally, a best possible ocean
circulation experiment will be performed, which will also include sea floor pressure data from
GRACE based on methods developed in a separate project. This analysis will give invaluable
information on the ocean role in climate.

Objective 7: To provide specific recommendations for quality assessment of GOCE data
and for integrating geoid and MDT computations with GOCE.

Many conditions for the success of GOCE lie at the level of the processing of its data, which
for a large part is going to be new to everyone. This implies that special and dedicated care of
the data processing be taken; to ensure that the best Earth’s gravity field model can be
delivered to the scientific users. The GOCINA project will in particular support the mission in
two distinct cases, namely (1) to educate and prepare the community in using GOCE data for
oceanography including sea level and climate research as well as operational prediction; and
(2) to develop methods for generating regional gravity fields and to use them to generate a
best possible regional gravity field and geoid model for the North Atlantic that can be used in
validation of the GOCE products.

Innovation

The GOCINA project will focus on the development of innovative integrated techniques for
analyses of the geoid and mean dynamic topography. These methods will rely on new
techniques of data assimilation and geoid inversion which have been developed over recent
years and will bring these together in order to force the errors down in calculating the best
possible solutions based on all the currently available data.

More information

More information on the GOCINA project may be found on the Internet at
http://www.gocina.dk
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The New 'International Centre for Global Gravity Field Models (ICGG)'
at GFZ Potsdam

Peter Schwintzer, Franz Barthelmes, Wolfgang Köhler, Hartmut Pflug
GeoForschungsZentrum Potsdam, Germany,

Dept. 1 'Geodesy and Remote Sensing'

Within the framework of the IAG International Gravity Field Service (IGFS) GFZ
Potsdam has committed himself to establish the new International Centre for Global
Gravity Field Models (ICGG). ICGG is one of five centres under the roof of IGFS. The
other centres are the three traditional ones: Bureau Gravimetrique International (BGI) in
Toulouse, France, International Geoid Service (IGeS) in Milan, Italy, and International Centre
for Earth Tides (ICET) in Brussels, Belgium. These centres shall be completed by the new 2nd

International Geoid Service (IGeS) at NIMA, Saint-Louis, USA. The kick-off for the new
IAG IGFS Service with its five centres shall be during the IUGG 2003 General Assembly in
Sapparo, Japan.

According to the IGFS 'Terms of Reference' it is the purpose of the new International
Centre for Global Gravity Field Models to collect all existing global gravity models, to
validate and to distribute them. Moreover, it shall provide the geodetic community with
software for global gravity models' manipulation and applications and shall contribute to the
IGeS schools.

The ICGG scientific staff at GFZ Potsdam is composed of Peter Schwintzer (head), Franz
Barthelmes and Wolfgang Köhler with technical support by Hartmut Pflug.

A web-based portal for global gravity models' data and product retrieval and download, and
user interaction with the centre is presently under preparation. The status of the functionality
as implemented at the tentative ICGG web site at GFZ Potsdam is described in the following.
The functions and contents are subject for continuous updating and upgrading according to
the actual scientific state-of-the-art. In particular the service has also to be designed to accept
and handle time series of spherical harmonic coefficients that are going to be derived from the
CHAMP and GRACE gravity satellite missions. The public access to the site shall be made
available as soon as the establishment of the new IAG Service is officially decided.

The functions and the preparation status of the Data Base and Information System of the
'International Centre for Global Gravity Field Models (ICGG)' are as follows:

Collecting and long-term archiving of all existing global gravity field models

The models, including all necessary background information, will be available as data sets in
a uniform self-explanatory format that is open for possible future requirements as e.g. time
series of coefficients.
Currently available models in spherical harmonic coefficients (based on a compilation by H.
G. Wenzel, transformed into the ICGG-format):
SE1, RAPP67, SE2, GEM1, GEM2, GEM3, GEM4, SEIII, RAPP73, GEM5, GEM6,
KOCH74, GRIM1, HARMOGRAV, GEM7, GEM8, GRIM2, GEM9, GEM10, GEM10A,
GEM10B, GEM10C, RAPP78, RAPP81, GRIM3, GEML2, GRIM3B, GPM1, HAJELA84,
GRIM3L1, GPM2, OSU86C, OSU86D, OSU86E, OSU86F, GEMT1, OSU89A, OSU89B,
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TEG1, GEMT2S, GEMT2, GRIM4S1, GRIM4C1, TEG2, TEG2B, GEMT3S, GEMT3,
GRIM4S2, GRIM4C2, OSU91A, GRIM4S3, GRIM4C3, OGE12, JGM1S, JGM1, GFZ93A,
GFZ93B, JGM2S, JGM2, JGM3, GRIM4S4, GRIM4C4, GFZ95A, EGM96S, TEG3, GFZ96,
EGM96, GFZ97, GRIM5S1, GRIM5C1, TEG4, PGM2000A, EIGEN1S, EIGEN2

Validation of global gravity field models by standardized procedures

To enable a standardized evaluation of a global model, an on-line procedure will be installed
that compares it in the spatial and spectral domain with other models and data sets for various
resolutions. The results will be provided as tables containing the statistics as well as maps and
graphs showing the spatial and spectral distribution of differences.
The currently available validation process contains the following calculations using the model
to be evaluated:
• geoid and gravity anomaly differences to the best known reference models (presently

EIGEN, EGM96, TEG4) after adequate filtering with various filter lengths
• differences to ocean geoids from altimetry after adequate filtering with various filter

lengths
• differences to a global set of gravity anomalies from NIMA (continents only) after

adequate filtering with various filter lengths
• degree variances of geoid and standard deviations and of differences with respect to

selected models
• differences to GPS/levelling-derived geoid point values from U.S.A., Canada, Europe

Calculation of various products derived from the global models

Currently the following input parameters can be chosen to generate gridded data from the
spherical harmonic coefficients of a selected model and from differences in spherical
harmonic coefficients between two models, respectively:
• name of the model
• name of the difference model
• reference system
• functional (geoidal height, gravity anomaly, gravity disturbance)
• grid (resolution, height) or set of coordinates (lat., long, height)
• in case of grid: point or block mean value
• degree and order window (lmin => lmax, mmin => mmax)

Collecting and long-term archiving of software for global gravity field models'
manipulation and transformation

Currently available:
• calculation of geoid, gravity anomalies and gravity disturbances on grids or given

coordinates from spherical harmonic coefficients for 'windows' of degree or order
(lmin => lmax, mmin => mmax)

• differences of grids (including some statistics)
• degree variances from spherical harmonic coefficients, standard deviations and

differences of spherical harmonic models
• filtering of grids in the spatial domain
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Web site for access to global gravity field models and derived products, user interaction
with the service, animation  and on-line software application

Currently available:
ICGG home page with the following features:
• table of available models including information about year of generation, maximal degree,

used data, reference, download-link
• table of global gravity field modelling related publications
• interactive online visualization of the models in form of coloured, illuminated geoid relief,

projected on a sphere; implemented interactions are:
- animation of a rotating geoid (cf. Figure 1)
- interactive control of view on rotating geoid
- zoom in/out
- difference of two models
- arbitrary degree windows
- visualization of selected spherical harmonics for tutorial purposes
  (cf. Figure 2 for examples of zonal, sectorial and tesseral spherical harmonics)

Fig. 1:  Visualisation (Geoid) of a global gravity field model.

  
Fig. 2:  Visualisation of selected spherical harmonics: zonal, sectorial and tesseral
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Planned:
• user interface for model validation and download of results
• user interface for product generation (e.g. gridded data) and product download
• user interface for getting the manipulation software

Contribution to IGeS schools

Concise tutorials on global gravity field models and its application shall be prepared,
collected and made available here.

Yearly activity report

List of reports for download

Data policy

The access to the global gravity field models, its derived products, software and tutorials,
once offered by the centre, shall be unrestricted for any external user.
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