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Abstract. The abstract of a paper should be informative rather than descriptive. It is not a table of contents.
The abstract should be suitable for separate publication and should include all words useful for indexing. Its length
should be limited to one typescript page.

Foototes. Because footnotes are distracting, they should be avoided as much as possible.

Mathematics. For papers with complicated notation, a list of symbols and their definitions should be
provided as an appendix. Symbols that must be handwritten should be identified by notes in the margin. Ample space
(1.9 cm above and below) should be allowed around equations so that type can be marked for the printer. Where an
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sans serif for tensors), the type should be specified by a note in a margin. Bars cannot be set over superscripts ori
extended over more than one character. Therefore angle brackets are preferable to accents over characters. Care
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letter u, nu and v, eta and n, also subscripts and superscripts should be clearly noted and easily distinguished.
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Table. Tables are numbered serially with Arabic numerals, in the order of their citation in text. Each table
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Footnotes for the tables should appear below the final double rule and should be indicated by a, b, c, etc.
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GENERAL INFORMATION

1. HOW TO OBTAIN THE BULLETIN

2. HOW TO REQUEST DATA

3. USUAL SERVICES B.G.I. CAN PROVIDE
4. PROVIDING DATA TO B.G.IL




1. HOW TO OBTAIN THE BULLETIN

The Bulletin d'Information of the Bureau Gravimétrique Internarional is issued twice a year, generally at the
end of June and end of December.

The Bulletin contains general information on the community, on the Bureau itself . It informs about the daia
available, about new data sets...

It also conzains contributing papers in the field of gravimetry, which are of technical character. More
scientifically oriented contributions should better be submitted to appropriate existing journals.

Communications presented at general meeting, workshops, symposia, dealing with gravimetry (e.g. IGC,
$.8.G.’s,...) are published in the Bulletin when appropriate - at least by abstract.

Once every four years, an issue contains the National Reports as presented at the International Gravity
Commission meeting. Special issues may also appear (once every two years) which contain the full catalogue of the
holdings.

About three hundred individuals and institutions presently receive the Bulletin.
You may :

- either request a given bulletin, by its number (77 have been issued as of December 31, 1995 but numbers
2,16, 18,19 are out of print). »

- or subscribe for regularly receiving the two bulletins per year (the special issues. are obtained at additional
cost).

Requests should be sent to:

Mrs. Nicole LESTIEU

CNES/BGI :

18, Avenue Edouard Belin

31055 TOULOUSE CEDEX - FRANCE

Bulletins are sent on an exchange basis (free of charge) to individuals, institutions which currently provide
informations, data to the Bureau. For other cases, the price of each issue is 75 FF.



2. HOW TO REQUEST DATA

2.1. Stations descriptions Diagrams for Reference, Base Stations (including IGSN 71's)

Request them by number, area, country, city name or any combination of these.

When we have no diagram for a given request, but have the knowledge that it exists in another center, we shall
in most cases forward the request to this center or/and tell the inquiring person to contact the center.

Do not wait until the last moment (e.g. when you depart for a cruise) for asking us the information you need:
station diagrams can only reach you by mail, in many cases.

2.2. G-Value at Base Stations

Treated as above.

2.3. Mean Anomalies, Mean Geoid Heights, Mean Values of Topography

The geographic area must be specified (polygon). According to the data set required, the request may be
forwarded in some cases to the agency which computed the set.

2.4. Gravity Maps

Request them by number (from the catalogue), area, country, type (free-air, Bouguer...), scale, author, or any
combination of these.

Whenever available in stock, copies will be sent without extra charges (with respect to usual cost - see §
3.3.2.). If not, two procedures can be used:

- we can make (poor quality) black and white (or ozalide-type) copies at low cost,
- color copies can be made (at high cost) if the user wishes so (after we obtain the authorization of the editor).

The cost will depend on the map, type of work, size, etc... In both cases, the user will also be asked to send his
request to the editor of the map before we proceed to copying.

2.5. Gravity Measurements

2.5.1. CD-Roms

The non confidential data, which have been validated by various procedures are available on two CD-ROMs.
The price of these is :

- 800 (Eight hundred) French francs for individual scientists, universities and research laboratories or groups
working in geodesy or geophysics.

- 3000 (Three thousand) French francs for all other users.

Most essential quantities are given, in a compressed format. The package includes a user’s guide and software
to retrieve data according to the area, the source code, the country.

2.5.2. Data stored in the general data base

BGl is now using the ORACLE Data Base Management System. One implication is that data are stored in only
one format (though different for land and marine data), and that archive files do not exist anymore.

There are two distinct formats for land or sea gravity data, respectively EOL and EOS.



Col. -8
9-16
17-25
26-27

28-29

30

31-38
39-40

41-42

43-44

45-52

EOL
LAND DATA FORMAT
RECORD DESCRIPTION
126 characters

B.G.I source number
Latitude (unit : 0.00001 degree)
Longitude (unit : 0.00001 degree)
Accuracy of position
The site of the gravity measurements is defined in a circle of radius R
0 = no information
1 - R <=5 Meters
2 =5 <R <= 20 M (approximately 0'01)
3=20<R<=100M
4 = 100 < R <= 200 M (approximately 0'1)
5=200<R<=500M
6=500<R<=1000M
7 = 1000 <R <= 2000 M (approximately 1")
8 =2000 <R <= 5000 M
9=5000 M <R
10...
System of positioning
0 = no information
1 = topographical map
2 = trigonometric positioning
3 = satellite
Type of observation

1 = current observation of detail or other observations of a 3rd or 4th order network

2 = observation of a 2nd order national network
3 = observation of a 1st order national network
4 = observation being part of a nation calibration line
5 = coastal ordinary observation (Harbour, Bay, Sea-side...)
6 = harbour base station
Elevation of the station (unit : centimeter)
Elevation type
1 =Land
2 = Subsurface
3 = Lake surface (above sea ievel)
4 = Lake bottom (above sea level)
5 = Lake bottom (below sea level)
6 = Lake surface (above sea level with lake bottomn below sea level)
7 = Lake surface (below sea level)
8 = Lake bottom (surface below sea level)
9 =Ice cap (bottom below sea level)
10 = Ice cap (bottom above sea level)
11 = Ice cap (no information about ice thickness)
Accuracy of elevation
0 = no information

1=E<=002M
2=.02<E<=01M
3=.1<E<=1
4=1<E<=2
5=2<E<=5
6=5<E<=10
7=10<E <= 20
8=20<E<=50
9=50<E<=100

10 = E superior to 100 M
Determination of the elevation
0 = no information
1 = geometrical levelling (bench mark)
2 = barometrical levelling
3 = trigonometric levelling
4 = data obtained from topographical map
5 = data directly appreciated from the mean sea level
6 = data measured by the depression of the horizon
7 = satellite
Supplemental elevation (unit : centimeter)

(8 char.)
(8 char.)
(9 char.)
(2 char.)

(2 char.)

(1 char.)

(8 char.)
(2 char.)

(2 char.)

(2 char.)

(8 char.)



53-61
62-67
68-73

74-76
77-79
80-85

86-87

88-91
92-93

94-99

100-105

Observed gravity (unit : microgal)
Free air anomaly (0.01 mgal)
Bouguer anomaly (0.01 mgal)

Simple Bouguer anomaly with a mean density of 2.67. No terrain correction

Estimation standard deviation free-air anomaly (0.1 mgal)
Estimation standard deviation bouguer anomaly (0.1 mgal)
Terrain correction (0.01 mgal)

computed according to the next mentioned radius & density
Information about terrain correction
0 = no topographic correction
1 = tc computed for a radius of 5 km (zone H)
2 = tc computed for a radius of 30 km (zone L)
3 = tc computed for a radius of 100 km (zone N)
4 = tc computed for a radius of 167 km (zone 02)
11 = tc computed from 1 km to 167 km
12 = tc computed from 2.3 km to 167 km
13 = tc computed from 5.2 km to 167 km
14 =tc (unknown radius)
15 = tc computed to zone M (58.8 km)
16 = tc computed to zone G (3.5 km)
17 = tc computed to zone K (18.8 km)
25 = tc computed to 48.6 km on a curved Earth
26 = tc computed to 64. km on a curved Earth
Density used for terrain correction
Accuracy of gravity
0 = no information
1 =E <=0.01 mgal
2 =.01 <E <= 0.05 mgal
3=.05<E<=0.1 mgal
4=0.1 <E<=0.5 mgal
5=0.5<E <= 1. mgal
6=1.<E <=3.mgal
7=3.<E<=5.mgal
8=5.<E <= 10 mgal
9 =10.<E <= 15. mgal
10 =15. < E <= 20. mgal
11 =20. < E mgal
Correction of observed gravity (unit : microgal)
Reference station

This station is the base station (BGI number) to which the concerned station is referred

(9 char.)
(6 char.)
(6 char.)

(3 char.)
(3 char.)
(6 char.)

(2 char.)

(4 char.)
(2 char.)

(6 char.)
(6 char.)



106-108

109-111
112

113

114-120
121-126

Apparatus used for the measurement of G
0.. no information ]
1.. pendulum apparatus before 1960
2.. latest pendulum apparatus (after 1960)
3.. gravimeters for ground measurements in which the variations of G are equilibrated of
detected using the following methods :
30 = torsion balance (Thyssen...)
31 = elastic rod
32 = bifilar system
34 = Boliden (Sweden)
4.. Metal spring gravimeters for ground measurements
41 =Frost
42 = Askania (GS-4-9-11-12), Graf
43 = Guif, Hoyt (helical spring)
44 = North American
45 = Western
47 = Lacoste-Romberg
48 = Lacoste-Romberg, Model D (microgravimeter)
5.. Quartz spring gravimeter for ground measurements
51 = Norgaard
52 = GAE-3
53 = Worden ordinary
54 = Worden (additional thermostat
55 = Worden worldwide

56 = Cak
57 = Canadian gravity meter, sharpe
58 = GAG-2

59 = SCINTREX CG2
6.. Gravimeters for under water measurements (at the bottom of the sea or of a lake)
60 = Gulf
62 = Western
63 = North American
64 = Lacoste-Romberg
Country code (BGI)
Confidentiality
0 = without restriction
..... 1 = with authorization
2 = classified
Validity
0 = no validation
1 = good
2 = doubtful
3 =lapsed
Numbering of the station (original)
Sequence number

(3 char.)

(3 char.)
(1 char.)

(1 char.)

(7 char.)
(6 char.)



EOS
SEA DATA FORMAT
RECORD DESCRIPTION
146 characters

Col. 1-8 B.G.IL. source number (8 char.)
9-16 Latitude (unit : 0.00001 degree) (8 char.)

17-25 Longitude (unit : 0.00001 degree) (9 char.)

26-27 Accuracy of position - (2 char.)

The site of the gravity measurements is defined in a circle of radius R
0 = no information
1-R <=5 Meters
2 =5 <R <= 20 M (approximately 0'01)
3=20<R<=100M
4 =100 <R <= 200 M (approximately 0'1)
5=200<R<=500M
6=500<R <=1000M
7 = 1000 <R <= 2000 M (approximately 1")
8=2000<R <= 5000 M
9=5000M<R
10...
28-29 System of positioning (2 char.)
0 = no information
1 =Decca
2 = visual observation
3 =radar
4 =loran A
5 =loran C
6 = omega or VLF
7 = satellite
8 = solar/stellar (with sextant)
30 Type of observation (1 char.)
1 = individual observation at sea
2 = mean observation at sea obtained from a continuous recording
31-38 Elevation of the station (unit : centimeter) (8 char.)
39-40 Elevation type (2 char.)
1 = ocean surface
2 = ocean submerged
3 = ocean bottom
41-42 Accuracy of elevation (2 char.)
0 = no information
1 =E <=0.02 Meter
2=02<E<=01M
3=1<E<=1
4=1<E<=2
5=2<E<=5
6=5<E<=10
T7=10<E<=20
8=20<E<=50
9=50<E<=100
10 = E superior to 100 Meters
43-44 Determination of the elevation (2 char.)
0 = no information
1 = depth obtained with a cable (meters)
2 = manometer depth
3 = corrected acoustic depth (corrected from Mathew's tables, 1939)
4 = acoustic depth without correction obtained with sound speed 1500 M/sec. (or 820
fathom/sec)
'S = acoustic depth obtained with sound speed 1463 M/sec (800 fathom/sec)
6 = depth interpolated on a magnetic record
7 = depth interpolated on a chart

45.52 Supplemental elevation (8 char.)
53-61 Observed gravity (unit : microgal) (9 char.)
62-67 Free air anomaly (0.01 mgal) (6 char.)
68-73 Bouguer anomaly (0.01 mgal) (6 char.)

Simple Bouguer anomaly with a mean density of 2.67. No terrain correction



74-76 Estimation standard deviation free-air anomaly (0.1 mgal) (3 char.)

77-79 Estimation standard deviation bouguer anomaly (0.1 mgal) (3 char.)

80-85 Terrain eorrection (0.01 mgal) (6 char.)
computed according to the next mentioned radius & density

86-87 Information about terrain correction (2 char.)

0 = no topographic correction
1 = tc computed for a radius of 5 km (zone H)
2 = tc computed for a radius of 30 km (zone L)
3 = tc computed for a radius of 100 km (zone N)
4 = tc computed for a radius of 167 km (zone 02)
11 = tc computed from 1 km to 167 km
12 = t¢ computed from 2.3 km to 167 km
13 = tc computed from 5.2 km to 167 km
14 =tc (unknown radius)
15 = tc computed to zone M (58.8 km)
16 = tc computed to zone G (3.5 km)
17 = tc computed to zone K (18.8 km)
25 = tc computed to 48.6 km on a curved Earth
26 = tc computed to 64. km on a curved Earth
88-91 Density used for terrain correction (4 char.)
92-93 Mathew's zone (2 char.)
when the depth is not corrected depth, this information is necessary. For example : zone 50
Jor the Eastern Mediterranean Sea
94-95 Accuracy of gravity (2 char.)
0 = no information
1 =E <=0.01 mgal
2=.01 <E <= 0.05 mgal
3=.05<E<=0.1 mgal
4=0.1 <E <=0.5 mgal
5=0.5<E <= 1. mgal
6=1. <E <= 3. mgal
7=3. <E <= 5. mgal
8=5. <E <= 10. mgal
9=10. <E <= 15. mgal
10=15 < E <= 20. mgal

11 =20. < E mgal
96-101  Correction of observed gravity (unit : microgal) (6 char.)
102-110 Date of observation (9 char.)
in Julian day - 2 400 000 (unit : 1/10 000 of day)
111-113  Velocity of the ship (0.1 knot) (3 char.)
114-118 Eotvds correction (0.1 mgal) (5 char.)
119-121 Country code (BGI) (3 char.)
122 Confidentiality (1 char.)

0 = without restriction
1 = with authorization
2 = classified

123 Validity (1 char.)

0 = no validation

1 = good

2 = doubtful

3 = lapsed
124-130 Numbering of the station (original) (7 char.)
131-136 Sequence number (6 char.)
137-139 Leg number (3 char.)
140-145 Reference station (6 char.)

Whenever given, the theoretical gravity (Y o), free-air anomaly (FA), Bouguer anomaly (BO) are computed in
the 1967 geodetic reference system.

The approximation of the closed form of the 1967 gravity formula is used for theoretical gravity at sea level :
Yo = 978031.85x [ 1 +0.005278895 * sin? (¢) + 0.000023462 * sin% (¢) ], mgals

where O is the geographic latitude.

The formulas used in computing FA and BO are summarized below.




Formulas used in computing free-air and Bouguer anomalies

Symbols used :
g : observed value of gravity
Y : theoretical value of gravity (on the ellipsoid)
r : vertical gradient of gravity (approximated by 0.3086 mgal/meter)
H : elevation of the physical surface of the land, lake or glacier (H = o at sea surface), positive upward
Dj : depth of water, or ice, positive downward
D3 : depth of a gravimeter measuring in a mine, in a lake, or in an ocean, counted from the surface , positive
downward
G : gravitational constant (667.2 1013 m3 kg'J 52 )=k=2nG
Pc : mean density of the Earth's crust (taken as 2670 kg m3 )
s . 3
Pw : density of fresh water (1000 kg m™)
va : density of salted water (1027 kg m-3)
Pi : density of ice (917 kg m3 )
FA : free-air anomaly
BO : Bouguer anomaly

Formulas :

* FA: The principle is to compare the gravity of the Earth at its surface with the normal gravity, which first requires in
some cases to derive the surface value from the measured value. Then, and until now, FA is the difference
between this Earth's gravity value reduced to the geoid and the normal gravity y, computed on the reference
ellipsoid (classical concept). The more modern concept ™ in which the gravity anomaly is the difference between
the gravity at the surface point and the normal (ellipsoidal) gravity on the telluroid corresponding point may be
adopted in the future depending on other major changes in the BGI data base and data management system.

* BO : The basic principle is to remove from the surface gravity the gravitational attraction of one (or several) infinite

plate (s) with density depending on where the plate is with respect to the geoid. The conventional computation of
BO assumes that parts below the geoid are to be filled with crustal material of density pc and that the parts

above the geoid have the density of the existing material (which is removed).

* ¢f. "On the definition and numerical computation of free air gravity anomalies", by H.G. Wenzel. Bulletin d'Information, BGI, n°
64, pp. 23-40, June 1989.
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For example. if a measurement g py is taken at the bottom of a lake, with the bottom being below sea level, we have :

S Lake suriace

Dy

gs=8gM+2k px];DJ-TDz

3FA=35+ rH’yo

Removing the {actual or virtual) topographic masses as said above, we find :
g, =g ~kpl D +kp,(D - H)

=g, ~kpl [H+(D - H)]+kp, (D, - H)

=g, ~kp] H+k(p,—pIXD, - H)
= BO=06g +T H-7,

The 1able below covers most frequent cases. It is an update of the list of formulas published before.

It may be noted that, although some formulas look different, they give the same results. For instance BO (C)
and BO (D) are identical since :

—kpH+kp. —p D —Hy=-kp,(H~D,+D)—k(p.—p;)(H~D,)
=—kp, D —kp (H-D)

Similarly, BO (6), BO (7} and BO (8) are idenzical.

12



Elev. Situation Formulas
Type

1 Land Observation-surface FA=g+IH- 1
BO=FA- kp.H

2 Land Observation-subsurface FA=g+2kpcD2+ I'(H-D3)- 1o
BO=FA- kp.H

3 Ocean Surface FA=g-y%
BO=FA +k(pc- p,,)DJ

4 Ocean submerged FA=g+(2kp, -ND2-7%
BO=FA +k(pe- p’) Dy

5 Ocean bottom FA=g+(2kp,-T)D]-%
BO=FA +k(p.— p, )D]

6 Lake surface above sea level FA=g+TH-7Y,

with bottom above sea level BO=FA-k P»{ Dj-kpc(H-Dj)

7 Lake bottom, above sea level FA=g+2kplDj+TI'(H-Dp)- 1

BO=FA-k plDj-kpc(H-D})
f

8 Lake bottom, below sea level FA=g+2kp,Dj+I'(H-Dp)- %
BO=FA-k plH+k(p.. pl)(Dj-H)

9 Lake surface above sea level FA=g+TH- 7

with bottom below sea level BO=FA-k Pf, H+k(pc- P‘{ }Dj-H)

A Lake surface, below sea level (here H < 0) FA=g+IH- 1
BO=FA-k piH+k(pc- pl)D;}

B Lake bottom, with surface below sea level (H <o) FA=g+(2k p£ -N)Dj+TH-%
BO=FA-k pcH+k(pc- pl)D]

C Ice cap surface, with bottom below sea level FA=g+TH-7
BO=FA-kpiH+k(pc- pi)(D}]-H)

D Ice cap surface, with bottom above sea level FA=g+TH- 17

BO=FA-kpD]-kpe(H-DJ)

13



All requests for data must be sent to :

Mr. Gilles BALMA
Bureau Gravimétrigue International
18, Avenue E. Belin - 31055 Toulouse Cedex - France

In case of a request made by telephone, it should be followed by a confirmation letter, or telex.
Except in particular case (massive data retrieval, holidays...) requests are satisfied within one month following
the reception of the written confirmation, or information are given concerning the problems encountered.

If not specified, the data will be written, formatted (EBCDIC) on labeled 9-track tape (s) with a fixed block
size, for large amounts of data, or on diskette in the case of small files. The exact physical format will be indicated in
each case.

14




3. USUAL SERVICES BGI CAN PROVIDE

The list below is not restrictive and other services (massive retrieval, special evaluation and products...) may
be provided upon request.

The costs of the services listed below are a revision of the charging policy established in 1981 (and revised in

1989} in view of the categories of users : (1) contributors of measurements and scientists, (2) other individuals and
private companies.

The prices given below are in French Francs. They have been effective on January 1, 1992 and may be revised
periodically.

3.1. Charging Policy for Data Contributors and Scientists

For these users and until further notice, - and within the limitation of our in house budget, we shall only
charge the incremental cost of the services provided. In all other cases, a different charging policy might be applied.

However, and at the discretion of the Director of B.G.1., some of the services listed below may be provided free
of charge upon request, to major data contributors, individuals working in universities, especially students ...

3.1.1. Digital Data Retrieval

. on one of the following media :

* printout .........ceeee... 2 F/100 lines
* diskette........uueeennenn... 25 F per diskette (minimum charge : 50 F-
* magnetic tape ........... 2 F per 100 records

+ 100 F per tape - 1600 BPI
(if the tape is not to be returned)

. minimum charge : 100 F

. maximum number of points : 100 000 ; massive data retrieval (in one or several batches) will be processed
and charged on a case by case basis.

3.1.2. Data Coverage Plots : in Black and White, with Detailed Indices
. 20°%20° blocks, as shown on the next pages (maps 1 and 2) : 400 F each set.

. For any specified area (rectangular configurations delimited by meridians and parallels) : 1 F per degree
square : 100 F minimum charge (at any scale, within a maximum plot size of : 90 cm x 180 cm).

. For area inside polygon : same prices as above, counting the area of the minimum rectangle comprising the
polygon.

3.1.3. Data Screening

(Selection of one point per specified unit area, in decimal degrees of latitude and longitude, i.e. selection of
first data point encountered in each mesh area).

. 5 F/100 points to be screened.
. 100 F minimum charge.
3.1.4. Gridding
(Interpolation at regular intervals A in longitude and A'in latitude - in decimal degrees) :
. 10 FA AA’ ) per degree square
. minimum charge : 150 F

. maximum area : 40°x 40°

15



3.1.5. Contour Maps of Bouguer or Free-Air Anomalies
At a specified contour interval A(I, 2, 5,... mgal), on a given projection :
10 F/A per degree square, plus the cost of gridding (see 3.4) after agreement on grid stepsizes. (at any scale,
within a maximum map size for : 90 cm x 180 cm).
. 250 F minimum charge
. maximum area : 40° x 40°
3.1.6. Computation of Mean Gravity Anomalies
(Free-air, Bouguer, isostatic) over A xA' area : 10F/AA' per degree square.
. minimum charge : 150 F
. maximum area : 40°x40°
3.2. Charging Policy for Other Individuals or Private Companies
3.2.1. Digital Data Retrieval
. 1 F per measurement
. minimum charge : 150 F
3.2.2. Data Coverage Plots, in Black and White, with Detailed Indices
. 2 F per degree square ; 100 F minimum charge. (maximum plot size = 90 cm x 180 cm)

. For area inside polygon : same price as above, counting the area of the smallest rectangle comprising ihe
polygon.

3.2.3. Data Screening
. 1 F per screened point
. 250 F minimum charge
3.2.4. Gridding
Same as 31.4.
3.2.5. Contour Maps of Bouguer or Free-Air Anomalies
Same as 3.1.5.
3.2.6. Computation of Mean Gravity Anomalies

Same as 3.1.6.
3.3. Gravity Maps

The pricing policy is the same for all categories of users
3.3.1. Catalogue of all Gravity Maps
Printout : 200 F

Tape 100 F (+ tape price, if not to be returned)
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3.2.2. Maps

. Gravity anomaly maps (excluding those listed below) : 100 F each

. Special maps :

Mean Altitude Maps
FRANCE (1: 600 000) 1948 6 sheets 65 FF the set
WESTERN EUROPE  (1:2 000 000) 1948 1 sheet 55 FF
NORTH AFRICA (1:2 000 000) 1950 2 sheets 60 FF the set
MADAGASCAR (1:1 000 000) 1955 3 sheets 55 FF the set
MADAGASCAR (1:2 000 000) 1956 1 sheet 60 FF
"Maps of Gravity Anomalies
NORTHERN FRANCE Isostatic anomalies (1:1 000 000) 1954 55 FF
SOUTHERN FRANCE Isostatic anomalies Airy 50  (1:1 000 000) 1954 55 FF
EUROPE-NORTH AFRICA Mean Free air anomalies (1:1 000 000) 1973 90 FF
World Maps of Anomalies (with text)
PARIS-AMSTERDAM Bouguer anomalies (1:1 000 000) 1959-60 65 FF
BERLIN-VIENNA - Bouguer anomalies (1:1 000 000) 1962-63 55 FF
BUDAPEST-OSLO Bouguer anomalies (1:1 000 000) 1964-65 65 FF
LAGHOUAT-RABAT Bouguer anomalies (1:1 000 000) 1970 65 FF
EUROPE-AFRICA Bouguer Anomalies (1:10 000 000) 1975 180 FF with text
120 FF without text
EUROPE-AFRICA Bouguer anomalies-Airy 30  (1:10 000 000) 1962 65 FF

Charts of Recent Sea Gravity Tracks and Surveys (1:36 000 000)
CRUISES priorto 1970
CRUISES 1970-1975
CRUISES 1975-1977
Miscellaneous
CATALOGUE OF ALL GRAVITY MAPS
listing 200 FF
tape 300 FF

THE UNIFICATION OF THE GRAVITY NETS OF AFRICA

(Vol. 1 and 2) 1979

. Black and white copy of maps : 150 F per copy

. Colour copy : price according to specifications of request.

65 FF
65 FF
65 FF

150 FF

| Mailing charges will be added for air-mail parcels when "Air-Mail” is requested) |
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4. PROVIDING DATA TO B.G.L.

4.1. Essential Quantities and Information for Gravity Data Submissien
1. Position of the site :
- latitude, longitude (1o the best possible accuracy),
- elevation or depth :
. for land data : elevation of the site (on the physical surface of the Earth) *
. for water stations : water depth.

2. Measured (observed) gravity, corrected to eliminate the periodic gravitational effects of the Sun and Moon, and the
instrument drift **

3. Reference (base) station (s) used. For each reference station (a site occupied in the survey where a previously
determined gravity value is available and used to help establish datum and scale for the survey), give name, reference

station number (if known), brief description of location of site, and the reference gravity value used for that station.
Give the datum of the reference value ; example : IGSN 71.

4.2. Optional Information
The information listed below would be useful, if available. However, none of this information is mandatory.
. Instrumental accuracy :

- identify gravimeter (s) used in the survey. Give manufacturer, model, and serial number, calibration factor (s)
used, and method of determining the calibration factor (s).

- give estimate of the accuracy of measured (observed) gravity. Explain how accuracy value was determined.
. Positioning accuracy :

- identify method used to determine the position of each gravity measurement site.

- estimate accuracy of gravity station positions. Explain how estimate was obtained.

- identify the method used to determine the elevation of each gravity measurement site.

- estimate accuracy of elevation. Explain how estimate was obtained, Provide supplementary information, for
elevation with respect to the Earth's surface or for water depth, when appropriate.

. Miscellaneous information :

- general description of the survey.

date of survey : organization and/or party conducting survey.
- if appropriate : name of ship, identification of cruise.

- if possible, Eotvos correction for marine data.

. Terrain correction

Please provide brief description of method used, specify : radius of area included in computation, rock density
factor used and whether or not Bullard's term (curvature correction) has been applied.

* Give supplementary elevation data for measurements made on towers, on upper floor of buildings, inside of mines or
tunnels, atop glacial ice. When applicable, specify whether gravity value applied to actual measurement site or it has
been reduced to the Earth's physical surface (surface topography or water surface)

Also give depth of actual measurement site below the water surface for underwater measurements.

** For marine gravity stations, gravity value should be corrected to eliminate effects of ship motion, or this effect should
be provided and clearly explained.
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. Isostatic gravity

Please specify type of isostatic anomaly computed.
Example : Airy-Heiskanen, T = 30 km.

. Description of geological setting of each site
4.3. Formats

Actually, any format is acceptable as soon as the essential quantities listed in 4.1. are present, and provided that the
contributor gives satisfactory explanations in order to interpret his data properly.

The contributor may use the EOL and/or EOS formats as described above, or if he wishes so, the BGI Official Data
Exchange Format established by BRGM in 1976 : "Progress Report for the Creation of a Worldwide Gravimetric Data
Bank", published in BGI Bull. Info, n° 39, and recalled in Bulletin n° 50 (pages 112-113).

If magnetifc tapes are used, contributors are kindly asked to use 1600 bpi, uniabelled tapes (if possible), with no
password, and formatted records of possibly fixed length and a fixed blocksize, too. Tapes are returned whenever
specified, as soon as they are copied .
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TURKISH NATIONAL GRAVITY FILE (TNGF)
AND DETECTION OF GROSS ERRORS

Osman Alp, Mehmet Emin Avhan
General Command of Mapping
TR-06100, Ankara, Turkey

ABSTRACT

It is considered proper for scientific and practical reasons to store in a data center the gravity values in
Turkey collected by various institutions. The first attempt was focused mainly on the acquisition and
storage of 62476 point gravities. A preliminary evaluation of the data was to.compare the observed
values with the predicted values resulting in detection of some erroneous values. For ease of study,
Turkish National Gravity File (TNGF) was established as an indexed file of 624 records each covering an
area of 30’x30’. TNGF which then included observed gravity in Modlfied Potsdam Gravity Datum and
free air anomaly in GRS80 was later expanded adding long and short wavelength effects of the gravity
spectrum. The coordinates of the point gravities are latitude and longitude in ED-50, normal ortometric
height. Considering that gross error detection requires a comprehensive study, it was planned to carry
out a project aiming to update TNGF and detect gross errors . The algorithm in this study is comprised
of free alr anomaly prediction, height interpolation and Bouguer anomaly contouring. This algorithm
applied at first to 62250 point gravities and later to 2884 point gravities collected recently resulted in
detection of 201 gross errors leaving TNGF 64933 point gravities. We are also planning to expand the
present TNGF with terrain correction and isostatic anomaly.

1. INTRODUCTION

Gravity measurements in Turkey are performed by various institutions, namely, General Command
of Mapping (GCM), General Directorate of Mineral Resources and Exploration (MRE), Turkish
Petroleum Corporation (TPC), Earthguake Research Institution (ERI), Universities involved in geodetic
and geophysical research, natlve and foreign petroleum companies (Demirel et al. 1995). It is
considered appropriate in terms of scientific and practical benefits to house in a data center all gravity
observations collected by the above mentioned institutions, leading to the establishment of TNGF.
62476 point gravities were acquired in 1987 as a result of the first bilateral contacts with the
institutions concerned (Ayhan and Cobanoglu,1988).

Establishing such a file necessitates flagging and elimination of the gross errors. Most of the data
sets used in geosciences are reported to contain 1 % erroneous data . A gravity value differing more
than a desired value from its neighbouring value is a sign of gross error (Carrozzo et al.1982). The
erroneous gravities, though they are not used singly in gravity based projects, may still contaminate
other observations as they are spatially correlated with each other (Tscherning,1991).

Among the numerous error sources within gravity data are instrumental errors, recording errors,
positioning and datum errors, surveying errors (Scheibe et al.1993). Positioning error is dominant on
gravity anomaly to the extent of (1.5sin2¢) mGal/arcmin, ¢ being the latitude  of the point
(Hille,1987). Errors in helghts are mainly due to errors in interpolation on map. Instrumental errors
not noticed by the surveyor may also cause errors in observations. The surrounding magnetic effects,
pressure and temperature are among the sources that give way to errors in gravity values. Errors in the
surveying procedures and datum errors may cause abnormal gravity values. It is of prime importance
then to detect the gross errors and eliminate them from TNGF.
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2. TURKISH NATIONAL GRAVITY FILE (TNGF)

62476 point gravities acquired in 1987 underwent in 1988 a superficial test comprised of two
methods that were focused primarily on the control of data logs rather than on a detailed gross error

detection ( Ayhan and Cobanoglu,1988 ). In the first method, the mean values Ag for each block of
30'x30" were computed by means of free air anomalies Ag in the relevant block as

o 2hs
Ags &)

where n is the number of observations in the relevant block. The estimate for the standard deviation
o Is given as follows;

6=i\/ "> (ag-3g)° @

n-147

Number of gravity points whose |Ag, Z§ | differences are larger than 3 times O was found to be
1297. The second method made use of the interpolation for each gravity points by weighted means
using 10 closest points. Free air anomaly Ag for a point P was predicted by weighted means as
follows;

10 Ag
Z ( SI.S‘ )
- 1=1 ip
Ag P = 10 1 (3)
Z (S 1.5 )
i=1 ip

where  Ag, isthe i th observation and Slp is the distance between the points P and 1. The RMS of

the differences between Ag and Ag is

RMS = i‘/—};Z(Ag-—Ag)f )
i=1 .

Then 1450 gravity observations were found to have differences (Ag — Ag) larger than three times the
RMS. 484 gravity observations were found to be common in the two methods. Consequently, 2263
point gravities were compared with their data logs leading to detection of a total of 226 erroneous
observations which were as a result eliminated from TNGF. Finally, the remaining 62250 observations
were designed as an indexed flle of variable length composed of 624 records each having observations
in a block of 30'x30". 624 records covered whole Turkey with the latitudes 34° 30’ - 42° 30’ and
longitudes 25° 30’ - 45° 00’ . Figure 1 illustrates the gravity coverage as of the year 1988.
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Figure 1. Gravity Coverage in 1988

Each record in TNGF included 1/100000 sheet number such as H29, number of observations in the
record, and point values such as latitude and longitude (¢,A) In ED-50, normal orthometric height (H) ,
observed gravity (g) in Modified Potsdam Gravity Datum, free air anomaly Ag In GRS80 (Ayhan
and Cobanoglu,1988).

3. UPDATING TNGF AND GROSS ERROR DETECTION

TNGF was later expanded during the project Turkish Geoid-1991 by adding for each gravity point
long wavelenght effect of the gravity spectrum Ag, computed by GPM2-T1 tallored geopotential
model developed for Turkey and complete to degree and order 200, and short wavelength effect of the
gravity spectrum Ag; computed using the Resldual Terrain Model (RTM) (Ayhan,1993). Table 1
presents a descriptive information about the structure of TNGF while an example is given in Table 2,

Table 1. Structuiere of TNGF

Medium Disk
File Organization Indexed
Record Length 7500 longwords/30000 byte (Max)
Block Size 6400
Key Record Number (I=1,...,624)
Information Each record corresponds to the area of 30’x30’
Content Sheet no, No.of points, ¢ and A (ED-50) H,G, Ag
in GRS80, Ag- Ag,, Ag,

Table 2. Example for a record in TNGF

Sheet No Number of Points Sheet Name
No P A H g Ag Ag - Ag, Ag,
C ol (m) {mGal) (mGal) | (mGal (mGal)

14 13 H29
1 401500 | 323500 | 150.00 | 979000.0 85.50 -15.00 2.25
402000 [ 324530 160.00 | 979100.0 90.00 -18.50 3.50

o

13 4025 00] 325000 | 170.00 | 979200.0 95.00 -20.00 S.00
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We have, in addition to TNGF, mean Ag files of 6'x10', 30’x30’, 1° x1° to be used in various
scientific projects. Mean Ag values were computed using the methods given in Torge et al (1984),

You will find in the following the works carried out in this study. In 1994, it was decided to carry
out a project devoted to detection of the suspected gross errors which, we believe, are waiting to be
noticed within TNGF. The flowchart describing the algorithm in this study is shown in Figure 2. The
algorithm is comprised of three steps; free air anomaly prediction, height interpolation and Bouguer
anomaly contouring.

———ubeight Interpolation
TNGF

Agy Contouring
l m—W>wm v
Ag Prediction Elimination
Check on Map
iAg - [&gl > 10 mGal |—

Elimination TNGF

Figure 2. Algorithm for Gross Error Detection

10

30’

307 1 1°

Figure 3. Prediction And Observation Blocks

The prediction was applied separately for each block of 30'x30’ using the gravity anomaly

observations in 1°x1° regions surrounding the blocks (Figure 3). The predicted value Z&g for a point P
with its projection coordinates X, ,Y, and height H, was computed by the following formula;

1)
:-3.5
R R 2 1 ok ZAgulb‘P
Ag(Xp, Yp)=a+bHy + 3 3 CyX ¥+ )
(=0 = -3.5
k=01=0 Zsip
i=1
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The first two terms of the left side of eq.(5) account for the correlation with height. The frend was
remnoved by the third term with double sums, and the last term i3 the relation for weighted means. In
this method, gravity anomalies were corrected at first due to their correlation with height, next trend
was removed from this corrected gravity values. Finally, the residuals Ag, obtained after the removal

»

of the trend were used in weighted means. &,b,C,, in eq.(5) are the unknown coefficients. The

reader should refer, for further information on the prediction method given here, to Ayhan and Alp
{1988), Avhan et al. (1990) and Ayhan and Alp (1991). Evaluation of the prediction resulted in
obtaining 2051 observations whose observation and prediction differences exceeded 10 mGals.
Conslidering the error in heights of these points, it was declded to interpolate the helghts of these
points by bicubic splines using the 15”x20” (430 m x450 m) grid heights available for the area with
the latitudes 34° 30'-42° 30’ and longitudes 25° 30’-45° 00". This method makes use of the H, values
given at grid nodes to compute height for a point P like in Figure 4 as follows;

i+1 P I

Figure 4: Grid

. 33 '
H(‘Pp,lp)=Zzakl(kp—?»j)kﬁpp—gpi)l (6)

k=0 [=0

where @, and A, are latitude and longitude of point P. The unknown coefficients a,, were
determined from the H, values knownat 3'x3’ grid nodes (Sunkel,1980). The predicted heights of
2051 points were compared with their heights H in TNGF. The heights of 291 points having the

differences |H - H' larger than 60 m were checked on the 1/25000 scaled maps. This control resulted

In detection of errors in helghts of 90 points that were then ellminated from TNGF. Then the algorithm
was repeated once more and another set of 38 erroneous points was discarded from TNGF.

Considering that free air anomaly prediction and height interpolation may not still catch some
suspected gross errors, it was planned to contour Bouguer anomalies Ag ;. The idea here was to detect

gross errors that might show up as chimneys or volcanos on a contour map. Figure 6a shows a Agy

map with gross errors , and Figure 6b is the perspective display of the same map. Figure 7a and Figure
7b illustrate the same area after removal of the gross errors .
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Contour maps are therefore thought to be one of the effective ways to catch gross errors. This being the
case, Ag, maps that belong to blocks of 1° x 1° covering whole Turkey were contoured and 72

suspected gross errors were detected and eliminated from TNGF. As a result of this, a total of 200 gross
errors were eliminated from TNGF.

Right after this, another set of 2884 polnt gravitles was acquired covering mostly the gaps not
surveyed before. The new data set was tested against the gross errors in the same way as applied before.
The result was detection and elimination of only one gross error. The remaining 2883 point gravites
were then added to TNGF reaching a total of 64933 point gravities. Figure 8 depicts the coverage of
updated TNGF.

Flgure 8 . Gravity Coverage in 1995
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4. CONCLUSIONS

It is considered beneficial to store all gravity values in a data center. The first attempt to acquire
data started in 1987 and has been going on. 62476 point gravities were tested in 1988 against errors in
data logs ending in detection of 226 gross errors. This test not a detailed search for gross errors was
followed in 1994 by this study alming to detect as many gross errors as possible. This study was applied
in three steps, namely, free air anomaly prediction, height interpolation and Bouguer anomaly
contouring. 201 gravities were detected as gross errors and eliminated from TNGF leaving at our
disposal a total of 64933 point gravities. It is concluded that an effective way to catch suspected gross
errors is contouring that lets us locate the erroneous data displayed in conical shape. It is therefore
adviced to apply contouring primarily. The suspected gravities identified by contouring may then be
tested by Ag prediction and height interpolation.

TNGF was designed as an indexed flle of 624 records each covering an area of 30°x30’. This structure
may cause problems as data collection Is a continuing process. We may come across this problem
when we acquire new data that belong to areas outside of the present regions of 30’x30’. The numbers
given to these new records may at least distort the enumeration system of the file. Besides, record
lenght may not be enough for large number of point gravities. It is therefore considered more
appropriate to organize TNGF in such a way that each gravity point corresponds to a record.

Among the studies being carried out is expansion of TNGF with additional data including terrain
correction and isostatic anomaly. We are also planning to create grid gravity files at different spacing to
be used in varlous projects.
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Abstract

This paper describes newly digitized gravity data sets for the Mediterranean Sea which were derived from
ten free-air gravity anomaly maps produced by the working group around Prof. Morelli in the late 1960s
and early 1970s. The digitization was performed on a digitizing table by retracing the contour lines and
registering those line points that show significant changes in curvature. The resulting point list files were
converted to standard IfE point gravity data files (PG files). The data validation was done by internal
comparisons as well as comparisons at the overlapping zones of the maps. Finally, the new data sets were
compared with two altimetrically derived gravity anomaly files.

Introduction

In the late 1960s and early 1970s the working group around Prof. Morelli compiled several geophysical
data maps for the Mediterranean Sea (Morelli et al.,1969; Morelli, 1970; Morelli et al., 1975a-c). These
maps include ten plates of free-air gravity anomalies covering the area as depicted in figure 1. The
contour interval is 10 mgal, and the mapping was performed using the Mercator projection at a scale of
1:750,000. As the underlying gravity measurements are not available, these maps constitute the best
information source of the gravity field in the Mediterranean Sea. Hence, in the late 1970s mean gravity
anomalies with a block size of 6’ X 10’ and 5’ X5’ were derived by manual digitization (e.g. Torge et al.,
1984a and 1984b; Arabelos and Tziavos, 1992). These grids have been used extensively for gravity field
modelling in the Mediterranean Sea accepting the drawback that the field resolution of the original maps
is not fully exploited. Furthermore, aside from being less accurate, the manually digitized grids may
contain personal biases. Taking all this into account the Institut fiir Erdmessung (IfE) undertook the effort
to re-digitize the maps within the framework of the European Geoid Project (see e.g. Denker et al, 1996)
in a more sophisticated manner.

Digitization of the Gravity Maps

The digitization was performed with the help of a digitizing table. The contour lines were digitized
pointwise, i.e. the lines were represented by points of significant change in curvature. The desk
coordinates were transformed into geographical coordinates applying an affine transformation in the
mapping plane using at least 10 common points for the determination of the transformation parameters.
The resulting point list files (221,846 points altogether, see also figure 2) were converted separately for
each map to standard IfE point gravity data files (PG files). The relation of the original map names and
the IfE source names can be seen from table 1. The conversion step also included the transformation from
the International Normal Gravity Formula 1930 to the GRS80 normal gravity formula as well as the
transformation from the Potsdam reference system to the IGSN71 system (adding a constant of —14
mgal). For the computation of Bouguer anomalies the necessary depth values were interpolated from the
ETOPOS global topography model.
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Table 1 contains the statistics of the free-air and Bouguer anomalies for PG files created. The plate-wise
computed mean values of the free-air gravity anomalies have their lowest value at -33.19 mgal in the area
south of Crete (plate 13), whereas the highest value is found in the Aegean Sea with +38.32 mgal (plate
12). The variation of the gravity field can be seen more clearly from the large standard deviations
(25...85 mgal) and the minimum and maximum free-air anomalies of -222 mgal and + 138 mgal,
respectively. Also the Bouguer anomalies indicate a highly variable gravity field with mean values of
+12...+ 162 mgal, standard deviations of 30...63 mgal, as well as extreme values of -133 mgal and
+307 mgal, respectively.

Data Evaluation

All data sets were validated by comparing each observation with a value predicted from the adjacent
stations. This internal check was performed for each plate separately and the results are shown in table
2. The mean discrepancy is 0 mgal for all plates, while the standard deviations of the discrepancies vary
between 0.2 mgal and 0.9 mgal. The maximum discrepancies (in absolute terms) amount to about 10
mgal with most values being concentrated around 5 mgal.

Furthermore the overlapping zones of the adjoining plates were analysed by comparing data from one
plate with a predicted value from the other plate (cf. figure 1 and table 3). In case that there was no
actual overlapping between two adjacent plates, the comparison was performed by extrapolated values
from the second plate out to a distance of 5 km. This case is marked by an asterisk (*) in table 3. The
mean differences vary between -0.6 mgal and + 1.2 mgal excluding the extrapolation cases which yield
mean discrepancies between -1.6 mgal and 2.0 mgal, respectively. The majority of the mean differences
are in the range of -0.5...+0.5 mgal. The standard deviations of the discrepancies are in general less than
5 mgal, whereas the maximum discrepancies reach values of 25...30 mgal in absolute terms. When
pg0170 (plate 3) is excluded from the comparisons, the maximum discrepancies diminish to +10 mgal
indicating that plate 3 (Tyrrhenian Sea) may be less reliable. This has also been confirmed by overlaying
the original maps. Unlike the good agreement between all other plates, the contour lines of plate 3 do
not match very well with the adjacent maps. A reason for that could not be identified.

Finally, the digitized Morelli data were compared with two independent, altimetrically derived free-air
gravity anomaly data sets: (1) Sandwell — created by Sandwell and others by combining data of the
altimetric missions GEOSAT and ERS-1, Vers. 6.2 (Sandwell et al., 1995; Smith et al., 1995); (2) KMS
— created by Andersen and Knudsen from data of the ERS-1 geodetic mission, Vers. Nov. 1995
(Andersen and Knudsen, 1995; Andersen et al., 1995). For this purpose, at first the three data sets were
predicted onto a common grid with a resolution of 1' X 1.5'. Then the grid cells covering land areas were
excluded from the further processing by setting them as undefined. Table 4 contains the statistics of the
digitized (cf. also figure 3) and the altimetrically derived free-air anomalies as well as the differences
thereof. The differencing was performed considering three different threshold values for the depth (0 m,
500 m, 1000 m) to eliminate data over shallow seas.

The standard deviations of the gravity anomalies (Morelli, Sandwell, KMS) agree very well, while, on
the other hand, the mean of the Sandwell data set differs by about 2.5 mgal from the Morelli and the
KMS data. Also in terms of standard deviations the Morelli data agree better with the KMS data than with
the Sandwell data. The standard deviations of the differences decrease if the depth threshold value is
increased. But unlike the difference Morelli—KMS, where the standard deviation drops from almost 12
mgal to about 8 mgal, the standard deviation of the difference Morelli —Sandwell diminishes only from
16 mgal to 12 mgal. The geographical distribution of the differences is depicted in figure 4. It appears
that critical areas in the Sandwell data set are the Adriatic Sea, Aegean Sea, coastal areas of southern
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Italy, Crete and north-west Africa. With the KMS data set the area north of Tunisia and south of Sicily
may need further investigation. ;

Conclusions .

In the framework of the European Geoid Project the Institut fiir Erdmessung (IfE) digitized ten free-air
gravity anomaly maps of the Mediterranean Sea. The digitization was performed by retracing the original
contour lines. From the resulting point list files eleven standard IfE point gravity data files (PG files)
were constructed and validated. At the overlapping zones the PG files generally show standard deviations
for the differences of less than 5 mgal. In a comparison with two altimetrically derived free-air gravity
anomaly data sets the standard deviations of the differences were determined to be 8...12 mgal. The
eleven gravity data files were provided to the Bureau Gravimétrique International (BGI), Toulouse, as
public domain data sets.
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Table 2: Statistics of the internal check of all sources (units are mgal).

Data Set 7 # Mean 7 Std.Dev. Min. Max
pg0165 14643 0.00 0.49 4.14 6.58
pg0166 2598 0.01 0.19 -1.26 1.33
pg0167 21393 0.01 0.62 3.97 474
pg0168 21185 0.00 0.43 3.64 6.56
pg0169 10429 0.00 0.26 2.43 2.91
pg0170 57873 0.01 0.88 717 7.18
pg0171 20389 0.01 0.65 -5.21 9.64
pg0172 13013 0.00 0.71 6.76 5.00
pg0173 16061 0.00 0.41 3.82 3.43
pg0174 16993 0.02 0.48 4.01 4.98
pg0175 27269 0.00 0.48 5.78 6.93

Table 3: Statistics of the comparison of overlapping sources (units are mgal).

Comparison # Mean Std.Dev. Rms Min, Max.

pg0165 / pg0168 381 -0.108 0.389 0.403 -1.820 1.160
pg0167 / pg0170 6568 0.149 5.123 5.125 -25.430 21.470
pg0167 / pg0168* 99 -1.636 3.568 3.909 -12.780 2.020
pg0168 / pg0170 3601 -0.053 3.985 3.985 -15.840 17.390
pg0166 / pg0167 42 -0.086 0.465 0.468 -1.420 1.520
pg0166 / pg0168 81 0.192 0.630 0.655 -1.030 2.540
pg0168 / pg0171 770 1.198 5.632 5.754 -10.650 10.710
pg0171 / pg0170 4984 -0.171 5.834 5.836 -25.190 30.710
pg0170 / pg0172 4682 1.100 4.583 4.713 -18.690 24.190
pg0169 / pg0172 431 0.177 1.971 1.977 -5.150 5.800
pg0171 / pg0172 1739 -0.560 1.136 1.266 -6.140 3.540
pg0172 / pg0173* 79 1.966 4.475 4.874 -12.200 14.020
pg0173 / pg0174 - 978 -0.054 0.727 0.728 -4.030 4.180
pg0172 / pg0175* 27 2.019 7.244 7.389 -12.670 18.790
pg0174 / pg0175 2218 0.318 1.698 1.727 -5.020 11.410

* No overlapping; comparison performed by extrapolation out to 5 km.
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Table 4: Statistics of the digitized Morelli free-air gravity anomalies, altimetrically derived free-air
anomalies and differences thereof (units are mgal).

Data Set # Mean Std.Dev. Min. Max.

Morelli (M) 471343 -4.66 43.67 -232.05 138.31
Sandwell (S) 471343 -2.44 43.36 -235.12 248.36
KMS (K) 468825 -5.23 43.45 -229.73 180.64
M-S, depth >0 m 471001 2.22 15.83 -229.95 ~88.51
M-S, depth >500 m 334128 -0.99 13.26 -229.95 77.01
M-S, depth > 1000 m 267981 -0.61 11.70 -188.06 | - 71.88
M-K, depth >0 m 468627 0.50 11.74 -147.16 178.28
M-K, depth >500 m 334036 0.06 9.52 -147.16 74.98
M-K, depth > 1000 m 267969 0.29 8.19 -96.37 74.98
S-K, depth >0 m 468627 2.65 17.09 -124.09 198.54
S-K, depth >500 m 334036 1.03 13.40 -109.20 129.33
S-K, depth >1000m 267969 0.90 11.75 -92.85 121.84
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Fig. 1: Sheets of the Gravity maps 1:750 000 of the Mediterranean Sea (Morelli et al., 1975).
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Fig. 2: Point distribution of the digitized contour lines for all 10 maps.
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ABSOLUTE GRAVITY MEASUREMENTS IN SOUTH AFRICA

R J Kleywegt
Council for Geoscience, Pretoria
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Finnish Geodetic Institute, Helsinki
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University of Cape Town, Cape Town

R T Wonnacott )
Chief Directorate of Surveys & Land Information, Cape Town

Abstract:
Absolute gravity measurements have recently been made at two sites in South Africa, using the Finnish
JILAG-5 apparatus. This note summarises the results and compares them with published IGSN71 values.

1. Introduction

Africa is very poorly served when it comes to absolute gravity measurements. Aside from
absolute measurements made on the island of Madagascar in 1988 (Arnautov et al., 1989), no
modern absolute measurements of absolute gravity have been published for the African
continent. Although a number of sites in Africa form part of the proposed International
Absolute Gravity Base-station Network (IAGBN) (Boedecker and Fritzer, 1986), various
difficulties, mainly financial, have prevented such measurements taking place.

In late 1993 the Finnish Geodetic Institute approached the University of Cape Town with a
request for information on base stations in Cape Town for the purpose of calibrating a relative
gravity meter that was to be used in a research project in Antarctica. It transpired that the
Institute would also be shipping their portable absolute gravity meter, JILAG-5, via Cape
Town to Antarctica. This opportunity was used to take absolute gravity measurements in the
vicinity of Cape Town and Pretoria, with financial and logistical assistance from the Council -
for Geoscience and the Chief Directorate of Surveys and Land Information.

2. The Base Stations

Two sites were chosen so as to cover a wide range of gravity values in Southern Africa (Figure
1). The sites span a gravity range in excess of 900000pgal and are conveniently located close
to airports. They should provide a reliable and accurate baseline for the future calibration of
gravity meters belonging to the South African institutions involved.
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Figure 1 : Absolute Gravity Base Station Sites

The site selection near Cape Town focussed on selecting a site a sufficient distance away from
the coast so as not to be unduly influenced by the effects of ocean loading. A site at the
Geology Department of Stellenbosch University, some 30km away from Cape Town, had been
used in 1983 for the measurement of Earth tides (Melchior, et al., 1984) and this was
considered as a possible absolute gravity base station. However, the rooms available were too
small and the temperature could not be controlled. Furthermore, the building was situated on
alluvial deposits and was not considered stable. The site finally chosen was at the Afrikaans
language monument at Paarl, some 20km from Stellenbosch (Figure 2). The monument is
situated on basement granite and the management could offer us a large room partially
underground with a stable temperature. The site is less than 50m away from an IGSN71
excentre, Cape Town Al, established by the Chief Directorate of Surveys and Land
Information in 1979 (Wonnacott, 1979). The excentre, together with two others, was
established in order to provide a reference for the original Cape Town A, which was destroyed
during building operations in 1980.

In Pretoria and vicinity, the existing IGSN71 sites were all deemed not suitable, and a new site
was chosen at the Council for Geoscience’s seismometer facility in the Botanic Gardens at
Silverton, just outside Pretoria (Figure 3). The site is some 9km away from the IGSN71
stations Pretoria A and B at the Transvaal Museum in the centre of Pretoria.
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Absolute Gravity Station
Station Location: PAARL

Country: SOUTH AFRICA
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Remarks / Station Identity / Contact

The station is located in the Taal (Language) Monument outside Paarl on the southern

slopes of Paarl Mountain, 50 km north-east of Cape Town. Access to the station must be

arranged with the Paarl Museum. The station is marked by a brass stud with a 50 mm

collar drilled into the concrete floor of a storeroom beneath the monument.

For further details contact: Director of Control Surveys, Chief Directorate Surveys & Land
Information, Private Bag X10, Mowbray, 7705, South Africa.

Telephone +27 21 6854070 Fax + 27 21 6891351

Detailed Sketch (North? Station Marker?) / Photograph
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Figure 2: Locality Sketch - Paarl Base Station
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Absolute Gravity Station
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Remarks / Station Identity / Contact

The station is located in the Seismograph Building in the Botanical Gardens in Silverton,
Pretoria opposite the Council for Geoscience. The entrance gate is in Pretoria Road. The
Seismograph Building is operated by the Council for Geoscience. The station is marked by
a brass stud with 50 mm collar drilled into the concrete pier.

For further details contact: The Director, Council for Geoscience, Private Bag X112, Pretoria,
0001, South Africa

Telephone +27 12 8411228 Fax +2712 8411203

Detailed Sketch (North? Station Marker?) / Photograph
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Figure 3 : Locality Sketch - Pretoria Base Station
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3. Absolute Gravity Measurements

The JILAG-5 absolute gravity meter is one of a series of sixinstruments built at the Joint
Institute for Laboratory Astrophysics (JILA), National Institute of Standards and Technology
and University of Colorado, Boulder. The instrument is of the free-fall type, using a co-
accelerating chamber in a high vacuum. Details of the instrument are available in several
publications {Zumberge et al., 1982; Faller et al., 1983; Niebauer et al., 1986) and will not be
repeated here. The measurements at the Paarl site were carried out over the period 14-16
February 1994, and those in Pretoria over the period 21-23 February 1994. Corrections for the
influence of Earth tides were made using the parameters in the International Centre for Earth
Tides (ICET) data bank DB92 (Melchior, 1994; B Ducarme, personal communication, 1994)
for the Stellenbosch and Johannesburg tidal stations (Melchior et al., 1984). Additional
corrections were made for drift of the laser wavelength and in the frequency standard, for the
gravity effect of the atmosphere and for the effect of polar motion. This treatment conforms
with the IAGBN standards. Connections to the IGSN71 sites Cape Town Al and Pretoria B
were made using a LaCoste & Romberg gravity meter no. G-600. The results for the two
absolute sites are summarised in Table 1, while the results of the connections to the IGSN71
sites are summarised in Table 2.

Station Epoch Obs. Number | Standard | Vertical Result Result Result
Height | ofsets | deviation | gradient | at obs. height | atOmm | at 800mm
mm of 25 ofaset | pgal/m pgal pgal pgal
drops pgal
Paarl 15.02.94 837 146 6,8 -298,7 | 979525833,4 | ..6083,4 | ..58444
Pretoria | 22.02.94 837 160 3,5 -250,2 9786137624 | ..3971,8 | ..377.7

Table 1 : Summary of Results of Absoluie Graviiy Measurements

The vertical gradients of gravity used in reducing the measurements to the standard elevations
of Omm and 800mm were determined using the LaCoste & Romberg gravity meter. Each set of
measurements consisted of twenty-five drops - the standard deviation is that of an individual
set. The standard errors (one sigma) of the means are respectively 0,6ugal and 0,3pgal for
Paarl and Pretoria. The data from the Paarl site are noisier than those from Pretoria (possibly
due to more seismic activity and to the influence of ocean noise). If additional instrumental
sources of error (such as temperature and two-frequency interferometer effect) are included

the error estimates would be 5,5ugal and 7,3pgal for Paarl and Pretoria respectively (larger for
Pretoria as the temperature departed more from the calibration temperature and the separation

between red and blue laser results is larger). However, we believe that a more realistic estimate
for the absolute accuracy (one sigma) at both sites would be around 10pgal.
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Tie Gravity Difference Standard Error
pgal pgal
Paarl - Cape Town Al 95.5 0,3
Pretoria - Pretoria B 1087,8 2,6

Table 2 : Summary of Gravimeter Ties

The gravimeter ties each involve five measurements of the leg, measured over a two hour
 period. Instrumental corrections and corrections for Earth tides and drift were applied to the
measurements. The standard errors shown in Table 2 reflect the formal precision estimates
from the least-squares adjustment of the data. More realistically, we believe the standard errors
(one sigma) to be around Spgal.

4. Discussion

Combining the absolute measurements with the measured ties to IGSN71 stations produces the
results shown in Table 3. The IGSN71 values shown here are corrected versions of those
published in Morelli, 1974. The correction involves removing the effect of the Honkasalo
correction and restoring the effect of the permanent tidal deformation (Rapp, 1983).

Station This Survey IGSN71 Values Difference
pgal ugal pgal
Cape Town Al 979526178,9 979526229 50,1
Pretoria B 978615059,6 978615114 54,4

Table 3 : Comparison of Gravity Values

The formal precision estimates (one sigma) for the results of this survey can be determined by
combining the precision of the absolute gravity measurements with the precision of the -
gravimeter ties. This results in values of 0,7ngal for Cape Town A1 and 2,6pgal for Pretoria
B. A more realistic estimate would be around 10pgal. The formal precision estimates for the
IGSN71 values are 18ngal and 24pgal, respectively (Morelli, 1974). Even in terms of the
formal precision estimates, the mean bias of 52ugal (IGSN71 values too high) is barely
significant, while there is no apparent scale error in the IGSN71 network in South Africa. This
is in contrast to what has been reported for Australia (Boulanger et al., 1973) and is an
encouraging confirmation of the IGSN71 datum in the Southern African region. The baseline
Paarl-Pretoria covers a range in excess of 900000p.gal, and is ideally situated to serve as a
valuable calibration line in Southern Africa.
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At present only single ties have been made from the absolute sites to neighbouring IGSN71
sites. More excentre measurements need to be made, to safeguard the reference sites. In
addition, it may well be worthwhile to connect these sites to nearby VLBI and SLR sites
(VLBI and SLR at Hartebeeshoek, near Pretoria; SLR at Sutherland, 220km from Paarl). One
of the primary objectives of the IAGBN is to establish the temporal variations in gravity due to
crustal motion and variations in polar motion. This presupposes that repeat measurements will
be made at such sites. If the Paarl and Pretoria sites are to serve these same goals, then they
will also need to be re-occupied in the near future.
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Abstract

A vertical gravimeter calibration line has been established at the University of Karlsruhe. The
main purpose of the line is the calibration of electronic feedback gravimeters and the determi-
nation of short periodic screw calibration parameters of LaCoste-Romberg (LCR) gravimeters.
The line consists of eleven stations located in the staircase of a ten-story University building
and covers a gravity range of about 103 um/s®>. The gravity values of the stations have been
determined using observations with sexteen LaCoste-Romberg gravimeters. The calibration
of three of these gravimeters had previously been determined at the Hornisgrinde gravimeter
calibration line, which includes two absolute gravity stations. The standard deviations of the
adjusted gravity differences vary between 5 and 16 nm/s?.

1 Introduction

The main purpose of gravimeter calibration lines is the determination of the calibration func-
tion of spring gravimeters, which is used to convert observed counter units or electrical voltages
into gravity units (e.g. Kanngieser et al. 1983, Xu et al. 1987, Rdder 1994). Such a calibration
line usually consists of a number of gravity stations with specially chosen gravity differences
and accurately known gravity values. When establishing such a line, the natural variation of
gravity with height and/or latitude is utilized. Vertical gravimeter calibration lines establis-
hed in a high-rise-building profit from independence of weather conditions and quick and easy
transport of the gravimeters by using an elevator. But they suffer from the disadvantage of
relatively small gravity differences and disturbing accelerations by wind and human activities
in the building, and by possible disturbances from strong electromagnetic fields.

Vertical gravimeter calibration lines have been established and used in the past mainly in order
to determine short periodic calibration parameters (with periods < 78um/s?) for LCR model G
and D gravimeters. Nowadays these periodic calibration parameters can be determined much
easier and more accurately using large range electronic feedback systems (e.g. Schniill et al.
1994). But the application of electronic feedback systems (e.g. Weber and Larson 1966, Larson
1968, Harrison and Sato 1984, Roder et al. 1984, 1988) for the observation of small gravity
differences (e.g. Becker et al. 1995) or for the stationary observation of gravity variation with
time (e.g. Wenzel 1991) requires their periodical calibration.

Although calibration methods using a moving mass (e.g. Csapo and Szatmari 1995) or control-
led artificial accelerations (e.g. Van Rumbeke 1989, Richter et al. 1995) have been developped,
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the calibration of an electronic feedback system on a gravimeter calibration line is still the
easiest, quickest and most accurate method. Therefore the main reason for the establishment
of the vertical gravimeter calibration line at Karlsruhe was the calibration of electronic feed-
back systems for LCR gravimeters. In contrast to the vertical gravimeter calibration line at
Hannover (Kanngieser et al. 1983), the vertical gravimeter calibration line at Karlsruhe can
also be used for the calibration of LCR earth tide gravimeters (simply because we have chosen
0.60 m distance of the stations to the wall).
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Figure 1: The vertical gravimeter calibration line at Karlsruhe (after Rauber 1993)

2 Gravity observations

The gravity observations carried out until May 1995 on the vertical gravimeter calibration line
Karlsruhe (16 gravimeters, 945 readings, 783 gravity differences, see Tab. 1) have been obtained
partly by Rauber (1993) and partly by calibrating different electrostatic and electromagnetic
feedback systems. The gravimeters have always been installed centric above the station mar-
kers; the readings have been reduced from the position of the gravimeter’s mass to the station
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markers using the vertical gravity gradients (see below) given in Tab. 4.

Table 1: Gravimeters used at vertical gravimeter calibration line Karlsruhe

gravimeter owner reading epoche | number number
readings | gravity diff.
LCR-G156 Geod.Inst.Karlsruhe | screw 1993 39 35
LCR-G249 Geod.Inst.Karlsruhe | screw 1693 61 45
LCR-G299 IfAG Frankfurt screw 1993 37 55
LCR-G686 Geod.Inst.Karlsruhe | screw 1993 50 54
LCR-G156F | Geod.Inst.Karlsruhe | feedback 1993 70 62
LCR-G156G | Geod.Inst.Karlrsuhe | feedback | 1994-1995 60 50
LCR-G249F | Geod.Inst.Karlsruhe | feedback 1993 70 52
LCR-G249G | Geod.Inst.Karlsruhe | feedback | 1994-1995 32 15
LCR-G299F | IfAG Frankfurt feedback | 1993-1995 56 41
LCR-G318F | TU Berlin feedback | 1993-1995 127 107
LCR-G528F | LVA Baden-Wiirttbg. | feedback | 1994-1994 64 62
LCR-G716F | Univers. Bonn feedback | 1994-1995 72 47
LCR-G995F | GFZ Potsdam feedback | 1993-1994 64 40
LCR-G1023F | LVA Baden-Wiirttbg. | feedback | 1994-1995 62 60
LCR-G1029F | Univers. Bonn feedback | 1994-1994 32 28
LCR-G1029G | Univers. Bonn feedback | 1995-1995 39 30

3 Evaluation of the gravity observations

The raw gravity observations with LaCoste-Romberg gravimeters are readings of the counter
and dial or readings of a digital voltmeter connected to the output of the electronic feedback
system. The unit of the counter readings (counter unit = CU) corresponds to about 10 pm/s?.
The readings of the feedback output voltage made in Volts are treated formally in the following
as counter readings. After converting the readings z;(¢) made at station ¢ and time ¢ into gravity
units using a calibration table provided by the manufacturer, the preliminary calibrated reading
;.
Zi(y) 18

Zzl'(i) = F(Zi(z)) (1)

given in nm/s®. The preliminary calibrated reading zz'»(t) has to be corrected for gravity variation
with time due to earth tides and air pressure, yielding the corrected observation

Ly = Z:'(t) + 8Get(i,r) + 0Gap(iy) (2)

with 6ge.(;,) = earth tide correction, § Jap(i,t) = air pressure correction. The corrected observation
Ligty satisfies the observation equation (e.g. Wenzel 1985, 1995b)

Liy + vigy + AFy — Py + dy = gi (3)
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with AF{, = calibration polynomial, F.,) = periodical calibration function, d(zy = drift poly-
nomial, g; = gravity value of station ¢, and

AF(zf) = Z Z;k - By (4)
k=1
i 27 - z; 27 - 2
P, . i . s !
(i) ; {mq cos Tq + Y, - 810 Tq } (5)
diy = _(ti—to)' - Dy, (6)

.\
1l
=)

The observation equation (3) is usually called "g-model” adjustment. The calibration of the
gravimeter is modelized by the calibration polynomial AF and the periodical calibration fun-
ction P, the gravimeter drift is modelized by the drift polynomial d. The determination of the
gravity values and of the calibration parameters is the task of the gravity network adjustment;
the drift parameters D are usually of less importance. For a sufficiently accurate modelization
of the gravimeter drift in (6) one usually needs daily drift polynomials of degree m = 3 .. 5,
which creates a large number of unknown drift parameters. If e.g. a gravity network with 50
stations has been observed during 20 days with 4 gravimeters, and if for each gravimeter and
each day a drift polynomial of degree 3 is applied, one has to solve for 320 drift parameters
compared to only 50 unknown gravity values. Thus, the computational burden of the gravity
network adjustment applying the "g-model” is usually rather high.

In order to reduce the computational effort, the so-called ”Ag-model” is often applied for
the adjustment of gravity networks (e.g. Wenzel 1985, 1995a, b). Here, "observed” gravity
differences are computed from successive gravimeter readings at stations ¢ and j :

AL +vij = gi — g; — {AF) — AFn} + { Py — Py} + {d(t) — d(t;)} (7

In (7), the difference of the drift polynomial at time ¢; und ¢; appears; for small time differen-
ces t; — t; a first degree drift polynomial or no drift modelization at all is usually sufficient.
Thus, the number of unknowns in the "Ag-model” is considerably smaller compared to the
"g-model” and the ” Ag-model” can be applied for the adjustment of large gravity networks on
small computers like personal computers.

Because the drift modelization is always incomplete, the residuals of both the ” Ag-model”
and the ”g-model” are correlated; the correlation of the gravimeter readings can be taken into
account as time dependent covariance function in the adjustment of gravity networks with the
"g-model” and with the "Ag-model”. When applying the same functional and stochastical
model, identical results are obtained with the "g-model” and with the ” Ag-model”.

The standard deviations of the observations usually depend on the gravimeter itself, on the
transport conditions, on the time difference between the stations and on the observer. They
are usually taken into account individually for each gravimeter dependent on the transporta-
tion method (hand, car or air craft transportation) and have to be determined by variance
component estimation within the adjustment.

The adjustment of the gravity observations carried out on the vertical gravimeter calibration
line Karlsruhe has been carried out using the program GRAVNA 2.1 (Wenzel 1995a), which
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uses the "Ag-model” described above (e.g. Wenzel 1985, 1995a, b). The earth tide corrections
have been computed using the tidal potential catalogue of Cartwright and Tayler (1971) and
Cartwright and Edden (1973) with earth tide parameters derived from gravity tide observations
carried out at Karlsruhe (Tab. 2). The vertical gravity gradients at the stations (Tab. 4) used
for the reduction of the observations to the station markers have been derived from a polyno-
mial of degree 7 fitted to all the gravity values (of an approximate solution) of the calibration
line to the stations height. Calibration parameters for gravimeters LCR-G249, G299 and G636
derived from observations at the Hornisgrinde gravimeter calibration line (Lindner et al. 1996)
have been introduced as known parameters into the adjustment of the vertical gravimeter ca-
libration line Karlsruhe (Tab. 3). These calibration parameters define the scale and accuracy
of the vertical gravimeter calibration line Karlsruhe.

-

Table 2: Gravimetric earth tide parameters obtained at station Karlsruhe

Program ETERNA 2.3, highpass filtering

File KASTACK2, gravimeters LCR-G156F and G249F

186.5 days, 1991, standard deviation 1.216 nm/s?

wave | amplitude amplitude factor phase lead

[nm/s?] L]

Q1 67.576 | 1.14718 + 0.00206 | -0.2331 + 0.1029
01 353.358 | 1.14852 £ 0.00039 | 0.0886 + 0.0197
M1 27.603 | 1.14077 £+ 0.00502 | 0.3512 + 0.2520
P1 - 163.664 | 1.14326 + 0.00085 | 0.1019 =+ 0.0425

S1K1 492.446 | 1.13809 £ 0.00028 | 0.1609 <+ 0.0141
J1 27.978 | 1.15634 £ 0.00502 | 0.0344 -+ 0.2486
001 15.241 | 1.15117 £ 0.00917 | -0.0214 <+ 0.4564
2N2 11.413 | 1.15467 =+ 0.00522 | 2.4072 + 0.2591
N2 72.401 | 1.16976 + 0.00083 | 2.5242 <+ 0.0408
M2 383.648 | 1.18677 <+ 0.00016 | 2.0234¢ + 0.0077
L2 11.110 | 1.21584 + 0.00565 | 3.8625 + 0.2662
S2 178.614 | 1.18758 £+ 0.00034 | 0.6258 =+ 0.0166
K2 48.637 | 1.18950 <+ 0.00126 | 0.9150 + 0.0608
M3 4.439 | 1.06351 £ 0.00675 | 0.4665 + 0.3638
M4 0.033 | 0.65811 + 0.35389 | 112.72 £+  30.81

The gravity datum of the vertical gravimeter calibration line at Karlsruhe has been derived
by connection to the station 16/0 Karlsruhe (g = 9809414.58 & 0.07 pm/s?) of the Deutsche
Schweregrundnetz 1976 (Sigl u.a. 1981, Boedecker and Richter 1984, 1987). For the gravity
network adjustment described here a free network adjustment with partial trace minimization
has been chosen. The adjusted gravity values are given in Tab. 4, the standard deviations of
the adjusted gravity differences (5 ... 16 nm/s?) are given in Tab. 5. The normalized residuals
of the observed gravity differences are shown in Fig. 2. The calibration parameters of the
different gravimeters derived from the adjustment of the vertical gravimeter calibration line
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Karlsruhe are given in Tab. 6; the relative accuracy of the linear calibration parameters is
generally between 1 and 2 -107%.

Table 3: Calibration parameters determined from observations at the gravimeter calibration
' line Hornisgrinde

Gravimeter | linear calibration parameter
LCR-G249 | 1.000326 =+ 0.000081
LCR-G299 | 1.000413 &+ 0.000143
LCR-G686 | 1.000267 &+ 0.000077

gravimeter | period | periodical calibration parameter
[CU] | x[nm/s’] y [nm/s?]

LCR-G249 | 35.4706 | 137. + 10.|117. =+ 10.
LCR-G249 | 70.9412 | 41. £ 16.| -42. =+ 15.
LCR-G686 | 36.6667 6. £ 6.-16. =+ 7.
LCR-G686 | 73.3333 | -13. £ 10.| 16. =+ 9.

Table 4: Adjusfed gravity values of the vertical gravimeter calibration line Karlsruhe
(¢ = 49.010808°, X = 8.417911°)

station height gravity | stdv. gravity
gradient
[m.4.N.N.] [nm/s?] | [nm/s?] | [nm/s? per m]

0990 112.627 | 9809426731. 8. -2764.
1000 116.086 | 9809417244. 6. -2757.
1005 119.086 | 9809408825. 8. -2817.
1010 122.671 | 9809398646. 5. -2904.
1020 126.274 | 9809388018. 5. -2969.
1030 129.858 | 9809377314. 5. -3000.
1040 133.452 | 9809366527. 4. -3005.
1050 137.041 | 9809355740. 6. -3002.
1060 140.642 | 9809344951. 7. -3002.
1070 144.242 | 9809334117. 7. -3005.
1080 147.830 | 9809323360. 9. -2986.

4 Conclusions

A vertical gravimeter calibration line has been established at Karlsruhe, which enables the
calibration of electronic gravimeter feedback systems and the determination of short periodic
calibration parameters of LaCoste-Romberg gravimeters. The calibration line consists of eleven
stations in a ten-storey building on the campus of the University Karlsruhe; it covers a gravity
range of about 103 um/s?. The gravity values of the calibration line have been determined by
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observations with 16 different LCR gravimeters; three of these gravimeters had previously been
calibrated at the Hornisgrinde gravimeter calibration line, which includes two absolute gravity
stations. The standard deviations of the adjusted gravity differences of the vertical gravimeter
calibration line amount between 5 and 16 nm/s?. Thus a relative accuracy of up to 2 - 10™*
may be achieved for the linear calibration parameters of electronic feedback systems.

Table 5: Standard deviations of adjusted gravity differences
in nm/s® of the vertical gravimeter calibration line Karlsruhe

| Nr. [ 0990 [ 1000 [ 1005 [ 1010 [ 1020 [ 1030 [ 1040 | 1050 | 1060 | 1070 | 1080 ||

0990 0 6 8 7 8 9 10 12 13 13 16
1000 6 0 7 7 8 8 8 10 11 12 13
1005 8 7 0 7 9 10 10 11 12 13 14
1010 7 7 T 0 6 7 7 9 10 11 12
1020 8 8 9 6 0 6 7 9 9 11 12
1030 9 8 10 7 6 0 5 8 9 9 11
1040 10 8 10 7 7 5 0 7 8 8 9
1050 12 10 11 9 9 8 7 0 7 8 9
1060 13 11 12 10 9 9 8 7 0 7 9
1070 13 12 13 11 11 9 8 8 7 0 )
1080 16 13 14 12 12 11 9 9 9 S 0

10.0 % ™

5.0 %

0.0 % | r T l 1

=3. -2. -1 0. 1. 2 3

Figure 2: Histogram of normalized residuals

The vertical gravimeter calibration line Karlsruhe has today about the same accuracy as the
vertical gravimeter gravimeter calibration line Hannover had in 1983 (Kanngieser et al. 1983).
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Both calibration lines are independent from each other, because they have been derived from
independent observations. Thus there exist two independent tools to calibrate gravimeter feed-
back systems whith an accuracy of up to 2 - 10~%.

Table 6: Adjusted calibration parameter for the used gravimeters

gravimeter lin. cal. param. quad. cal. param.
[10-° /(nm/s?)]

LCR-G156 1.002308 + 0.000294
LCR-G156F | 1.049465 =+ 0.000277 | 0.1280 <+ 0.0136
LCR-G156G | 1.072010 + 0.000196 | 0.6836 =+ 0.0077
LCR-G249F | 1.068728 =+ 0.000297 | 0.0184 <+ 0.0158
LCR-G249G | 1.072464 =+ 0.000473 | 0.0542 =+ 0.0198
LCR-G299F | 1.038260 -+ 0.000179 | 0.0008 =+ 0.0046
LCR-G318F | 0.941423 + 0.000478 | 0.1002 =+ 0.0442
LCR-G528F | 1.017072 + 0.000175 | 0.0212 =+ 0.0044
LCR-G716F | 0.993603 -+ 0.000224 | 0.0337 =+ 0.0062
LCR-G995F | 1.031653 =+ 0.000208 |-0.0208 <+ 0.0051
LCR-G1023F | 1.038975 =+ 0.000155 {-0.0189 =+ 0.0030
LCR-G1029F | 1.036843 + 0.000197 | 0.0705 =+ 0.0035
LCR-G1029G | 1.051784 =+ 0.000229 | 0.0903 + 0.0051

gravimeter | period | periodical calibration parameter
[CU] X [nm/s?] y [nm/s?]
LCR-G156 | 3.9400 | 17. + 6.| 20. =+ 6.
LCR-G156 | 7.8900 | -15. + 10.| -6. =+ 7.
LCR-G249 | 3.9400 | 9. + 7.| 40. + 6.
LCR-G249 | 7.8900 | 84. + 8.|-84. =+ 11.
LCR-G299 | 3.9400 | 18. + 10.|-16. =+ 11.
LCR-G299 | 7.8900 2. £ 19.1 27. &+ 18.
LCR-G686 | 3.6667 | -10. =+ . 6. =+ 5.
LCR-G686 | 7.3333 | 26. + 8.| 42. =+ 7.
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ABSTRACT

A regional gravity data base has been prepared as part of a comprehensive programme to
evaluate all available gravity data in Oman A major portion of this data set represents
measurements made by oil companies over several decades. It also includes data from
academic institutions in northern Oman and some new measurements made recently by us in
several areas of gravity gaps. A major part of our synthesis has been the standardization of
the oil company data. The data base comprises over 35000 stations which are in the
IGSN71 system and the gravity anomalies are referred to the International Gravity Formula
1967. These data will be used to prepare a Bouguer anomaly map of Oman to be published
in due course. Here we also report on the historical development of gravity surveying and
establishment of absolute gravity bases in Oman.

INTRODUCTION

Gravity measurements on the surface of the earth represent one of the most fundamental
geophysical data. They are very valuable as they have many applications. Gravity surveying
sometimes takes several decades and a considerable amount of resources to completely
cover a region or a country. It is, therefore, vital that the investments made in gravity
surveys must be protected. In order to preserve the gravity data most countries have a
national gravity programme. In absence of such programmes there is a danger of
permanent loss of valuable gravity data. This problem is often faced with oil company data,
especially with surveys made prior to the advent of digital computers. The petroleum
company data are generally confidential in nature and remain locked in oil company
archives. Even when they are declassified it is not always possible to retrieve the data
completely. Much of the gravity data in Oman are collected by oil companies over a period
of four decades. A need to preserve these and other gravity data was realized by the
Ministry of Petroleum and Minerals (MPM) and in 1995 a programme was initiated to
establish a comprehensive gravity data base with an ultimate objective of preparing a
Bouguer anomaly map of the Sultanate of Oman at a scale of 1 : 1,000,000. Sultan Qaboos
University (SQU), Petroleum Development Oman (PDO) and the National Survey
Authority (NSA) have collaborated with MPM on this project..
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Many years of efforts by various organizations has resulted in a nearly complete gravity
coverage of the Sultanate of Oman. Gravity surveying in Oman was initiated in 1950s in
connection with oil exploration. A considerable part of the Sultanate has been covered by
oil company surveys and these gravity data sets are proprietary property of the Petroleum
Development Oman. Outside the oil concession areas, gravity measurements have been
made primarily in the northern Oman Mountains by many academic institutions as a part of
their research projects to study the unique Oman ophiolites. The academic data are
basically available in public domain. A major effort of the present gravity programme has
been a systematic evaluation and synthesis of the existing data. Although the PDO data
remain proprietary, we have been allowed access to these data for our gravity synthesis.
Additionally, we have made new measurements in several gravity gaps. In addition to the
Bouguer anomaly map of Oman we hope to prepare a gravity data catalogue that will be
maintained by the Ministry of Petroleum and Minerals. This paper presents an up-to-date
report on the status of gravity measurements in Oman and some details of our synthesis
effort.

GRAVITY BASES

The first gravity bases were established at Fahud and Duqm to facilitate gravity surveys in
oil concession blocks. The Fahud gravity base has been destroyed but Duqm base still
stands. An absolute gravity tie for these bases was made in May 1955 by T.E. Grimes of
Rayco. The gravity tie was carried out from the Dukhan base in Qatar which was tied to
the absolute gravity base at Sharjah Fort established by Bonini (Collier, 1955). A North
American gravitymeter (NA 10) was used for the tie and transportation between bases was
by aircraft. The Duqm gravity value was determined to be 978658.3 mgals based on
Bonini's Sharjah base value of 978903.5 mgals in the 1930 Potsdam reference system.
Collier (1955) has also mentioned a discrepancy of 0.3 mgals in the Bonini value of the
Sharjah base that was discovered by three separate ties. We have not found any sketch of
the Dugm base but its description in a report by Featherstone and Gormley (1981) reads
"The base at Duqm was established at an IPC triangulation station, at the southwest corner
of Dugm airstrip." We visited Duqm and we are confident that we found the original base
marker set in concrete. A single tie with the Dugm NSA base yields a IGSN71-value of
978646.82 mgals for the original Dugm base station.

Fresh international gravity ties were made for Oman when gravity surveys were initiated in
the Oman Mountains. During 1977-78 Coleman and Maghanani (1981) established an
absolute gravity base at Seeb International Airport by connecting it to the base at Santa
Cruz Airport, Bombay, India (g = 978,658.9 mgals). The Oman base value was determined
from two ties. One tie was made by direct travel between Muscat and Bombay. The second
tie was carried out via United Arab Emirates which allowed additional control by making an
observation at Sharjah gravity station WA2075 of Woollard and Rose (1963). The Seeb
International Airport base value was computed to be 9789252 mgals based on the
International gravity base at Potsdam (g = 981274.0 mgals). We have not found any
description of this station and are not aware of its condition. It is likely that this base is
destroyed during the extension of the airport terminal building.
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The station is located in the College of Science building, Sultan Qaboos University. The
station is sited at the base (ground level) of the west staircase, outside the Department of

Earth Sciences. There is no permanent marker. g (iGsn71) = 978907.16 mgals
Latitude : 23" 35.53' N Longitude = 58" 10.00' E Elevation = 60 m (approx.)
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The station is located at NSA GPS point 7911001 near Seeb International Airport, outside the
Oman Aviation Services compound. There is a protected subsurface marker and a concrete
pillar. The measurement was made at ground level. g (1esN71) = 978921.955 mgals

Latitude : 23° 35.00' N Longitude = 58" 17.68'E Elevation = 22 m (approx.)

Figure 1 : Sketch maps showing the locations of SQU and SIP absolute gravity bases.
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Shelton (1984) established a base at the Seeb International Airport (IGSN71 g-value:
978,923.50 + 0.05 mgals). The base was sited outside the old domestic arrivals and it has
been lost due to recent extension work. Fortunately, prior to its destruction Shelton
(personal communication) had connected the Seeb airport base with a base (SQU) located
on the premises of the College of Science, Sultan Qaboos University. The sketch of the
SQU base is shown in Figure 1A. The IGSN71 value for this base was computed to be
978907.16 £ 0.07 mgals.

In 1995 we have carried the absolute gravity value from the SQU base to a new base (S5/4)
near the Seeb International Airport (Figure 1B). This base is centrally located at a GPS
point established by the NSA and has easy accessibility. The IGSN71 value for this base is
978921.955 mgals. We determined this gravity value by making two connections between
SQU and SIA with a D-type LaCoste and Romberg gravimeter. Subsequent to our ties we
have received the gravity value for this point from NSA (described below). The difference
of SIA (our value) - SIA (NSA value) is +0.025 mgal which is remarkably insignificant
considering that the two values have been brought from different original sources.

Recently the NSA commissioned setting up of a high precision first order gravity base
station network for Oman. As a first step two primary absolute bases were established at
Rustaq and Saiq in October 1994 by the Geological Survey of Canada using a JILA-2
absolute gravimeter (Liard and Gagnon, 1995). These stations are located in protected
premises of the Ministry of Defence establishments. The Saiq station is located at high
altitude, on top of the Oman Mountains whereas the Rustaq station is at a low altitude. The
short distance between these stations and a gravity difference of over 375 mgals defines a
calibration line which could be used to check on gravimeter constants. The data for these
stations are not yet released for general use.

A network of 37 bases, well distributed throughout Oman has also been established by NSA
(Figure 2). This network was established with collaborative assistance from the British
army. Gravity loops were carried out from the absolute bases at Rustaq and Saiq. Gravity
observations were made using three (sometimes four) LaCoste and Romberg gravimeters
(Anonymous, 1995). Gravimeter transportation was mainly by four-wheel drive cars. In
some cases helicopters were also used. These bases have brass markers and are located
generally in protected compounds. Maximum error in gravity values has been estimated at

+0.05 mgal. The gravity values for these bases are still confidential but we have been-
allowed use of a few selected bases in our synthesis. At present, permission from NSA is
required to use these bases.

THE GRAVITY DATA BASE

A primary objective of our synthesis has been to compile a comprehensive gravity data base
from all available data in Oman. Gravity data in Oman can be divided into three main
groups, namely, petroleum exploration data, data from academic institutions and new data
collected by us.
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Figure 2 : Map of Oman showing distribution of NSA gravity base stations. Triangles

show the locations of the absolute gravity stations at Rustaq and Saiq.

61




PETROLEUM EXPLORATION GRAVITY COVERAGE
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Figure 3 : The filled in pattern shows the extent of gravity surveys conducted by various
' petroleum exploration companies
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Petroleum Exploration Data

Gravity surveys carried out in various oil concessions areas since the early 1950s have
resulted in the largest and densest gravity data set for Oman. Figure 3 shows approximate
coverage of the petroleum company data. Clearly, the Oman Mountains and exposed
basement areas of Marbat and Ja'alan were not covered by oil company surveys as they are
not important from petroleum potential point of view. These data were collected by several
companies (see Table 1) with an average station spacing of about 1 km. These data have
been compiled by PDO as a large file presumably with gravity values in the IGSN71 system.
We examined the PDO file and found that the gravity data were not homogenous. All
stations have station number, UTM coordinates and Bouguer anomalies. Only data in
southern Oman (Dhofar region) and newer acquisitions have elevation and Bouguer
reduction density. For northern Oman region no station elevations were included. Many
individual gravity surveys with variable Bouguer reduction densities were integrated in the
PDO file. Although we were informed that the observed gravity values weére tied to the
IGSN71 datum, we did not find any report describing the synthesis of the PDO data.
Clearly the PDO file was unusable for our synthesis in its original form due to variable
density reduction and other uncertainties.

TABLE 1 : Summary of PDO gravity stations

Name of Company Period Number of Stations
British Petroleum pre 1950 10006
Ray Geophysical Corporation. 1954-58 47612
Seismograph Services Ltd. 1966-69 11787
Petty Ray Company 1980 1276
Comapgnie Générale de Géophysique 1988 3350
Geosource Co. 1988-89 2919
Comapgnie Générale de Géophysique 1992 1813
Comapgnie Générale de Géophysique 1995 1777

As a first step in standardization of the oil exploration data we separated the points for
which all basic facts (coordinates, elevation and Bouguer gravity anomaly) were available.
The remaining points were then divided in several subsets and a source was identified for
each set. Information on survey characteristics for many of these sets was obtained from
PDO files. In some cases there was not enough information available so original records
were obtained from Shell International, Holland. As a final check on our standardization
we computed Bouguer anomalies and compared them with neighbouring data sets as well as
with data from other sources where available. While going through the PDO data set we
found that some field surveys were unusable as we could not find enough information to
standardize these. Fortunately, these data do not represent any significant loss as most of
these data lie in regions like the Batinah coastal plains where other data are available.

The PDO data set is too dense for our compilation. We have selected only 33032 points

from the file to give us an average spacing of about 4 km between points. These data are
still proprietary and basic facts for these data cannot be released only with the consent of
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DATA FROM ACADEMIC INSTITUTIONS
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Figure 4 . Academic institutions gravity data mainly cover the Oman Mountains and the
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PDO. These data were made available to us specifically for our compilation of the gravity
map.

Academic ﬁaia

Gravity data coverage by academic institutions is primarily in northern Oman (Figure 4).
These data come from three sources, namely, Hawali Institute of Geophysics (Manghnani
and Coleman, 1981), Open University (Shelton, 1984) and Montpellier University (Ravaut,
1992). These data are in the IGSN71 system and complete basic facts are available for
these stations. There is some overlap between these data sets. Although these data
represent a small fraction of our data base, they cover geologically important region of the
Oman ophiolites.

TABLE 2 : Academic data distribution

Institution Period Number of Stations
Hawaii Institute of Geophysics 1978-79 470
Open University 1978-80 873
Montpellier University 1992 1012

New Data

Preliminary compilation of available PDO and academic data indicated several gaps in the
data coverage for Oman. These gaps were Salalah-Marbat-Jabal Samhan region, parts of
Rub Al-Khali, Masirah Island, Ras Al-Hadd-Al-Ashkharah region and the Musandam
Peninsula. During August 1995 - January 1996 a total of 275 new measurements have been
made in the gap areas (Figure 5 and Table 3). Gravity observations were made using a D-
type LaCoste & Romberg gravimeter (Serial No. D-152). The observed gravity values are
based on our SQU base value described earlier. During our surveys we also made gravity
measurements at a number of NSA network stations which provided additional check on
gravity values. Measurements were made mainly along motorable roads (asphalt and
graded) as well as along tracks in the wadis and desert.. For some stations on the
Musandam islands observations were made using a helicopter. Spacing between the stations
varied between 4 and 10 km. Elevations at gravity stations were computed using two
precision surveying altimeters (American Pauline System). The NSA and PDO bench marks
were used as elevation control points. Generally, the altimeter loops were 2-4 hours long.
Station locations were determined from global positioning system (GPS) receivers and were
plotted on 1:100,000 scale topographic maps.

TABLE 3 : Distribution of new gravity stations

Area Period Number of Stations
Salalah-Marbat August-September 1995 106
Masirah Island October 1995 49
Ras Al-Hadd - Al-Ashkharah November 1995 72
Musandam Peninsula December 1995 22
Rub Al-Khali January 1996 26
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NEW GRAVITY STATIONS 1995 - 1996
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Figure 5 : Gravity surveys were conducted in 5 areas during 1995-96 and a total of 275

new stations were established in the gaps.
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CONCLUDING REMARKS

Our recent synthesis has generated a regional gravity data base for the Sultanate of Oman
comprising some 35192 gravity stations. There are still some small gaps remaining which
are hoped to be filled in the near future. This data set has been processed to prepare a
Bouguer anomaly map of Oman at a scale of 1 : 1,000,000. The Bouguer anomaly values
are in the IGSN71 datum (Morelli et al., 1974) and are referred to International Gravity
Formula of 1967. Terrain corrections have been applied to stations measured in areas of
rough topography, namely, in Oman mountains, Salalah mountains and the Musandam
region. The Bouguer anomaly map of Oman is under preparation and the Ministry of
Petroleum and Minerals is planning to publish this map for unrestricted circulation. The
" gravity data standardized by us will also be utilized by the NSA for computation of a local
geoid model for Oman. It must be emphasized here that the PDO component of the data
base still remains confidential and cannot be released without the consent of the Ministry of
Peroleum and Minerals.
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