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Foreword

Everyone needs the geoid as a reference surface to define and properly use height sys-
tems. It is also the natural link between geodetic coordinates of high precision and
satellite derived positions.

The development of regional gravimetric geoid determination is at its peak thanks to
several factors: (i) an open data exchange policy which enables a given country to get
data over neighbouring areas; (ii) the maturation of global gravity field models which is
a slow (because difficult) process but gives better and better basis for higher resolution
and precision geoid computation; (iii) the availability of better digital terrain models;
(iv) the maturation of methods and software which are becoming operational; (v) the
possibility to control the computed geoid by GPS/leveling points, and sometimes to use
a combination strategy employing all data.

The roles of the Bureau Gravimétrique International (BGI) and of the International
Geoid Service (IGeS) have been very influential if not paramount on several of these
factors, as it appeared a year ago during the IAG symposium “Gravity and Geoid” held
jointly in Graz, Austria, by the International Gravity Commission and the International
Geoid Commission {Sept. 11-17, 1994) - of which BGI and 1GeS respectively are oper-
ating arms. This is why it was decided to have a combined special issue of the Bulletins
of these services on the topics of “New Geoids in the World”.

An increasing number of new groups are being engaged in national or regional geoid
computations and the papers published in this Bulletin describe the efforts made and
results obtained, sometimes at a preliminary or intermediate stage. The race towards a
centimeter-geoid was started a few years ago, the arrival line is rising on the horizon.

(5. Balmino, F. Sansé



THE EUROPEAN GRAVIMETRIC QUASIGEOID EGG95

Heiner Denker, Dirk Behrend, Wolfgang Torge
Institut fiir Erdmessung, University of Hannover, Nienburger Strae 6
D-30167 Hannover, Federal Republic of Germany

ABSTRACT

This paper describes the current status of the European quasigeoid calculation performed at
the Institut fiir Erdmessung (IfE). The progress made in the collection of high resolution
gravity and terrain data as well as the used computation techniques are described. The
calculated quasigeoid model, which was evaluated by GPS/leveling and Topex/Poseidon
satellite altimeter data, shows an accuracy of +1...5 cm over 10 to a few 100 km distance,
and of +5...20 cm over a few 1000 km distance, respectively. At present, long wavelength
errors of the global gravity field models and the terrestrial gravity data pose the major
problems,

1. INTRODUCTION

The geoid calculations performed for the whole of Europe at the beginning of the 1980s
(Torge et al. 1982, Brennecke et al. 1983) were limited to an accuracy of a few decimeters
with a maximum spatial resolution of some 20 km. The following decade then brought major
changes through improved modeling techniques, the availability of high resolution gravity
field data sets, and significant advances in the computing power, allowing now regional
geoid/quasigeoid calculations with an accuracy improved up to one order of magnitude. On
the other hand, also the accuracy demands in the fields of geodesy, geophysics and
engineering have substantially increased. Especially the combination of ellipsoidal heights
from the now fully operational Global Positioning System (GPS) with classical leveling data
is one of the primary drivers for precise geoid/quasigeoid calculations, requiring cm
accuracy over distances of a few km to a few 1000 km. IfE, therefore, is working on the
determination of a high precision and high resolution European quasigeoid model under the
auspices of the International Geoid Commission of the IAG (International Association of
Geodesy). Several preliminary solutions were presented at different places since the initiation
of the project in 1990 (Vienna, Prague, Wiesbaden, Beijing, Graz, Boulder). The last
complete report was published in the proceedings of the Joint Symposium of the
International Gravity Commission and the International Geoid Commission of the JAG held
in Graz in 1994 (Denker et al. 1994). The intention of this paper is to give a brief overview
on the status of the computations. The final results including the documentation are planned
to be ready before the end of 1995.

2. COMPUTATION TECHNIQUE

In the IfE gravity field modeling effort for Europe the primary interest is in the calculation
of height anomalies respectively quasigeoid undulations {. This has the advantage that only
gravity field data observed at the Earth’s surface and in its exterior enter into the calcula-
tions, while no assumptions about the gravity field in the Earth’s interior are needed. If



desired, a subsequent transformation from height anomalies { to geoid undulations N ¢an be
performed easily by introducing a density model:
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Here 2 is the mean value of gravity depending on the density model, 7 is the mean value
of normal gravity, and H is the orthometric height (for more details see e.g. Torge 1991).

The basic gravity field modeling strategy at IfE is based on the remove-restore technique,
where a high-degree spherical harmonic model and a digital terrain model (DTM) are
combined with terrestrial gravity field observations (point gravity data, etc.). In this
procedure, residual observations are computed first by subtracting the effects associated with
the spherical harmonic model and the DTM (or more generally the mass model). The
modeling techniques are then applied to the residual data. Finally the effects of the spherical
harmonic model and the DTM are added back to all predicted quantities. The remove-restore
technique was used successfully in the past in connection with least squares collocation and
integral formulas. Both methods give comparable results (see e.g. Denker 1988, Basi¢
1989), but the utilization of integral formulas together with FFT is much more efficient. For
the computation of continental-scale geoid/quasigeoid models the use of integral formulas
together with FFT is the only practicable technique to date.

In our first quasigeoid computations for Europe we used the Stokes formula in planar and
spherical approximation together with FFT, and we neglected the Molodensky correction
terms up to now. However, the use of Stokes equation in connection with the remove-restore
technique implies that the complete spectrum of the height anomalies (degree 2 to infinity)
is computed from the terrestrial gravity anomalies in the integration area augmented by the
global model values outside this region. In case that long wavelength discrepancies exist
between the terrestrial gravity data and the global model, the application of Stokes formula
will lead to an unreasonable distortion of the long wavelength gravity field components.
Such effects were clearly seen in our previous quasigeoid solutions when comparing the
results with satellite altimeter and GPS/leveling data. We found very long wavelength
discrepancies and strong tilts between the respective surfaces (with a magnitude of several
meters), which were attributed to the gravimetric quasigeoid solution.

To overcome this problem we decided to apply the least squares spectral combination
technique going back to Moritz (1976) as well as Sjoberg (1981) and Wenzel (1982). Here
the final height anomalies are obtained by

F=h+6+8 @

with {; and {, being the components associated with the spherical harmonic model and the
DTM, and {; being the contribution of the local gravity data obtained by the following
equation:
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In (3) and (4) Ag,=Ag-Ag,~Ag, are the residual gravity anomalies with Ag, and Ag, being
the components associated with the global model resp. the DTM, W(y) is the modified
integration kernel, P, are the Legendre polynomials of degree I, and w; are the spectral
weights. In (4) the w, determine how much signal is taken from the terrestrial gravity data
at a certain degree /, being dependent on the height anomaly error degree variances of the
potential coefficients or,z(sl) and the gravity anomalies af(an):
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In the above equation the o}(e A can be computed from the error covariance function of the
terrestrial gravity data (see e.g. Wenzel 1982).

Furthermore it should be noted that the above equations assume that the "true" geocentric
gravitational constant of the Earth GM is equal to the corresponding value of the reference
ellipsoid GM®, and that the gravity potential of the geoid W, is equal to the gravity potential
of the surface of the reference ellipsoid U, If there exist differences in these quantities, this
Ieads to the so-called zero order undulation

¢, = GM-GM® _ Ml ©)
rY ]

which has to be added in equation (2). If this basically constant term is neglected, the
resulting height anomalies refer to an ideal ellipsoid with the propertics GM=GM’® and
W,=U,, but whose dimensions (equatorial radius a) are not precisely known in terms of
numerical values. This is a key problem since the ellipsoidal heights from, e.g., GPS refer
to a specific reference ellipsoid (for more details see e.g. Rapp and Balasubramania 1992).
Usually this problem is overcome by considering a bias term in the comparison (in many
cases together with additional tilts to model long wavelength errors).

3. DATA DESCRIPTION

This section gives an overview on the data sets currently included in the gravity field data
base at IfE. The data base comprises about 2.3 million gravity data and 700 miilion topo-
graphical data. Figure 1 gives a graphical representation of the gravity data coverage in the
computation area. From the figure it becomes clear that the coverage with gravity observa-
tions is not sufficient for some marine areas as well as for the former Soviet Union. There-
fore, we decided to use altimetrically derived gravity anomalies from Basié¢ and Rapp (1992)
for all marine areas with an insufficient data coverage. For the area of the former Soviet
Union we used the 1° x 1° data set from Bureau Gravimétrique, being the only source of
information available at present.
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Fig. 1: Locations of point gravity data stored in the IfE data base (status Sept, 1995)
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Fig. 2: Digital terrain models stored in the IfE data base (status Sept. 1995)

Prior to utilizing these data in the quasigeoid calculation, a transformation into a common
reference system (IGSN 71, GRS 80 normal gravity formula) was carried out. Furtheron, all
data were validated using batch and interactive procedures developed at IfE. The basic
principle of this software is to compare each gravity observation with a value predicted from
the adjacent stations. Unrealistic values, showing large discrepancies, were then excluded
from the quasigeoid calculations.

The terrain data were subject to a similar validation process by comparing each elevation
with adjacent values. Here, unlike the gravity data, unrealistic values were replaced by
interpolated or apparently correct values (as is e.g. the case for intermixed numbers).
Smaller gaps were filled through interpolation, larger gaps and blank areas were allocated
values from ETOPOS. Finally, the digital terrain models were regridded to a common block
size of 7.5”%7.5" (or multiples of this block size) and transformed to the WGS 84
geocentric reference system. Figure 2 depicts the coverage with high resolution DTM’s used
for the present quasigeoid solution.

4. THE 1995 QUASIGEQ]]) SOLUTION

In 1995 a new quasigeoid solution EGG 95.01 was computed for entire Europe based on the
spectral combination technique in connection with the remove-restore procedure. For the
long wavelength gravity field information the spherical harmonic model OSU91A complete
to degree and order 360 (Rapp et al. 1991) was employed. The short wavelength gravity
field components were modeled using the residual terrain model (RTM) reduction technique
according to Forsberg and Tscherning (1981), where the reference topography was
constructed by a 15° x 15° moving average filter. The terrain reductions were all re-
computed in 1995 using strict numerical integration techniques without any approximations.
However, due to the large amount of computer time needed for this task, not all reductions



were finished at the time of writing this paper (about 20 % were unfinished). Therefore the
existing solution is considered as preliminary, and a new solution will be carried out when
all reductions are ready.

The residual gravity anomalies were gridded by a fast least squares prediction technique onto
a 1.0’ x1.5" grid covering the area from 25°N-77°N and 35°W-67.4°E. This yields 3,120
X 4,096 = 12,779,520 grid points. The field transformation from residual gravity to
residual height anomalies was carried out using equations (2)-(4). The practical evaluation
of the integral formulas was done by a 1D FFT technique suggested by Haagmans et al.
(1993) in connection with a detailed/coarse grid approach to further speed up the computa-
tions. The major advantage of this procedure is that an exact evaluation of any integral on
the sphere is possible (without periodicity effects of FFT).

For the spectral combination technique the following error covariance function for the
terrestrial gravity data was used:

cov(ey 6 = 16 mgal?] e ®

This model uses correlated noise and was suggested and applied by Weber (1984). The
spectral weights were derived on the basis of equation (5) using the above error covariance
function for the terrestrial gravity data and the error degree variances from OSU91A.. It was
decided to do the combination only up to degree 50, while between degrees 50 and 10000
(corresponding to the grid size used) the complete gravity field information was taken from
the terrestrial gravity data (w,=1.0). A cosine tapering window was applied between degrees
10000 and 30000. This turned out to be necessary because otherwise the integral kernel
started to oscillate. The quasigeoid solution EGG 95.01 is directly comparable to the
solution 94,01 as it uses the same integral kernel. For more details on this topic including
a plot of the integral kernel sec Denker et al. (1994).

The use of the spectral combination technique also permitted us to derive error estimates for
the resulting height anomalies resp. differences thereof (see e.g. Wenzel 1982). For the
spectral combination solution (o, = +4 mgal) we get standard deviations for height anomaly
differences of +15 cm over 100 km and +25 cm over 1000 km distance, respectively. In
case of a more optimistic error estimate for the terrestrial gravity data (o,, =+1 mgal) we
get standard deviations of +4 cm over 100 km and +12 cm over 1660 km distance,
respectively. When looking at the GPS/leveling comparisons, the latter estimates appear to
be more realistic (at least over shorter distances).

The major contribution to the final quasigeoid is coming from the spherical harmonic model
OSU91A with values ranging from —42 m to +68 m and a standard deviation of +27 m.
The standard deviations of the contributions from the DTM and the terrestrial gravity data
are 10.03 m and +0.74 m respectively. However, the maximum DTM effects are about
0.8 m, while the maximum effects of the terrestrial gravity data (i.e. corrections to the
OSU91A model) are exceeding 5 meters in areas where no data were used in the
development of the model.



5. EVALUATION OF THE 1995 QUASIGEOID SOLUTION AND CONCLUSIONS

The quasigeoid solutions for Europe developed at IfE were evaluated by means of satellite
altimeter data from the Topex/Poseidon mission and a number of GPS/leveling data sets.
However, because the present solution EGG 95.01 is considered as a preliminary resuit due
to the incomplete update of the terrain reductions (see previous section), we will report here
only on some selected comparisons with GPS/leveling data. In the following we will discuss
the results for the GPS/leveling campaign ISNET93 covering entire Iceland as well as for
the two data sets LITH1 and LITH2 covering Lithuania {(extension about 300 km). All three
data sets are new, i.e. have become available since our last report in 1994 (Denker et al.
1994), and cover regions where also new gravity and/or terrain data were acquired. A
statistics of the discrepancies between the GPS/leveling data and some selected quasigeoid
solutions is given in table 1. The comparisons were always done using a bias fit as well as
a bias and tilt fit in order to account for inaccuracies in the absolute positioning and for long
wavelength errors of all data sets involved (GPS, leveling, quasigeoid).

First we will discuss the results for the ISNET93 data set covering entire Iceland. Here it
has to be noted that the leveling data are not strictly refering to the same height datum as the
connections between different network parts were only done through tide gauges. For
Iceland a detailed DTM was made available just recently and, hence, was included for the

Table 1: Statistics for the comparison of selected quasigeoid solutions with different
GPS/leveling data sets. Units are meters.

Data Set Solution RMS Max. RMS Max.
ISNET93 EGGI1 0.335 1.058 0.320 0.907
Iceland EAGG1 EAGG]1 not available for Iceland
62 Stations OSU91A 0.370 1.033 0.279 0.693
EGG 94.01 0.262 0.891 0.199 0.737
EGG 95.01 0.210 0.746 0.169 0.524
LITH1 EGG1 0.540 1.704 0.389 1.077
Lithuania EAGG1 0.514 1.627 0.374 1.033
38 Stations OSU91A 0306 . 0.894 0.303 0.942
EGG 94.01 0.255 0.785 - 0.252 0.832
EGG 95.01 0.123 0.324 0.111 0.285
LITH2 EGG1 0.528 1.960 0.265 0.796
Lithuania EAGGI 0.504 1.866 0.254 0.756
727 Stations OSU91A 0.280 1.106 0.208 0.708
EGG 94.01 0.233 0.933 0.193 0.686
] EGG 95.01 0.085 0.472 - 0.074 0.478




first time in the 95.01 solution. The effect of the new high resolution DTM is clearly seen
in the comparison statistics. For the 95.01 solution we get an RMS difference of +0.21 m
for the bias fit and of +0.17 m for the bias and tilt fit, while the corresponding values for
the 94.01 solution are +0.26 m and +0.20 m, respectively. The RMS differences for the
comparisons with OSU91A and the older European gravimetric solution EGG1 (Zorge et al.
1982) are all in the order of +0.3 m. Furthermore in all comparisons for the ISNET93
campaign one can observe a stight improvement for the bias and tilt fit versus the bias fit,
thus indicating small long wavelength discrepancies between the gravimetric quasigeoid and
the GPS/leveling data in this region.

For Lithuania we have received point gravity data and a detailed DTM which was also
included in our calculations for the first time in the 95.01 quasigeoid solution. Here one can
see a stronger improvement of the 95.01 solution versus the older models. For the
GPS/leveling data set LITH2 with 727 stations the RMS difference is £0.085 m for the bias
fit and +0.074 m for the bias and tilt fit, while the correponding values for the 94.01
solution (without the new gravity and terrain data) are +0.233 m and +0.193 m,
respectively, proving the importance of using reliable gravimetric and topographic data. For
Lithuania (data sets LITH1 and LITH2) the older European solutions EGG1 and EAGG1
give a poorer agreement with GPS/leveling data than in Iceland for the bias fit with RMS
discrepancies of about £0.5 m, reducing to about +0.25 m for the bias and tilt fit.

Further evaluations of the quasigeoid solutions developed at IfE are reported in Denker et al.
(1994). For a local GPS/leveling data set for Lower Saxony in Germany (extension about
300 km) an RMS discrepancy of +0.065 m was found for the bias fit, while the corre-
sponding value for the bias and tilt fit was only +0.015 m, indicating that small but
significant tilts between the respective surfaces (0.7 ppm) exist in this region. For the
European north-south GPS traverse with a length of about 3000 km running from Austria to
northern Norway we observed also small tilts and an RMS difference for the bias and tilt fit
of +0.16 m (compared to +0.22 m for the bias fit). Futhermore a preliminary comparison
with EUREF (without a transformation of all leveling heights to a common reference system
due to lacking information on the underlying systems) gave an RMS discrepancy of £0.3 m.

To conclude, significant progress was made since the initiation of the geoid project in 1990
regarding the collection of gravity and terrain data, the computation algorithm (spectral
combination versus Stokes) and the evaluation of the results (use of GPS/ieveling and
Topex/Poseidon data). For areas with a good coverage and accuracy of the gravity and
terrain data, the accuracy of the latest solution is estimated as +1...5 cm over 10 to a few
100 km distance, and +5...20 cm over a few 1000 km distance, respectively. Problems that
need to be further studied in the future concern long wavelength errors of the global gravity
models and the terrestrial gravity data. Moreover, some data gaps still exist.
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Improvement of a High Resolution Geoid Height Model in the United States
by GPS Height on NAVD 88 Benchmarks

D. G. Milbert

National Geodetic Survey, NOAA, SSMC3, 1315 East-West Hwy., Silver Spring, MD 20910

(To be submitted to Bulletin Geodesique/Journal of Geodesy)

Abstract

A geoid model, G9501, is computed on a 3' grid using over 1.5 million gravity data from
the NGS database and from the Defense Mapping Agency. Computation involves a spherical
approximation to perform the linearized Molodensky integration by a 2-D FFT. The integration
computes a high frequency correction to an underlying OSU91A height anomaly surface. The
output grid of height anomalies are then converted into the final geoid grid. A terrain correction
grid at 30" resolution was computed by FFT with a spherical approximation of the classical
terrain correction integral.

Intercomparison with 1889 NAD 83 (86) GPS benchmarks with NAVD 88 Helmert
heights identified a 24.8 cm RMS variation about a tilted plane trend of 0.36 ppm. This tilt is
almost completely described by the datum difference between the NAD 83 (86) system and the
ITRF93(1995.0) reference frame. A simple, empirical covariance function with a very long
characteristic length, Z=500 km, was found to fit the detrended differences between the geoid
model and the GPS benchmarks.

A least-squares collocation predictor lead to the development of a smooth datum
corrector surface. Applying this surface to the geoid model produced a new geoid model,
G9501C. This model is biased relative to a geocentric geoid, but it successfully relates the NAD
83 (86) datum to the NAVD 88 datum. Evaluation of the covariances of the differences between
G9501C and the GPS benchmarks indicates an accuracy of 2.6 cm RMS with a characteristic
length of Z=40 km. The covariances also show a Gaussian noise source of 6.4 cm RMS. This is
primarily error in GPS ellipsoid height, and is due to a variety of sources, including GPS data
reduction and analysis procedures. Conversion of the datum corrector surface to a geocentric
form, verifies a -72 cm bias in NAVD 88 seen by Rapp (1995).

1. Introduction
The Global Positioning System (GPS) of satellites have been instrumental in enabling us
to survey at unprecedented accuracies. Baseline length repeatability of 0.1 to 0.01 parts-per-

million (ppm) has become more and more common. However, many applications require the
production of an orthometric height. One must then convert ellipsoidal heights obtained by GPS
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into the orthometric heights typically produced by optical leveling. The conversion requires a
geoid model with an accuracy, ideally, comparable to the accuracy of GPS ellipsoid heights. The
combination of GPS and a geoid model provides a capability for GPS leveling of orthometric
heights.

Experiences with intercomparisons of GPS ellipsoid heights on vertical benchmarks
against existing high resolution (3' x 3") geoid models have shown evidence of systematic offsets
and tilts (Milbert 1991a). In the conterminous United States, the offsets can approach 1 meter
(m); while the tilts between the ellipsoidal, orthometric, and geoidal reference surfaces often
reach 1-2 ppm. It has been found, however, that these large discrepancies can be accommodated
in standard adjustment models for GPS vectors (Milbert 1991b, Zilkoski 1990). In such
adjustments, GPS vectors translate and (possibly) rotate to absorb vertical datum errors between
the three reference systems. The orthometric heights from these computations have been
checked by subsequent vertical field work, and are found to be accurate (Satalich 1994,
Soehngen et al. 1991).

The success of such an adjustment suggests that the error in high resolution geoid models
is predominantly of long-wavelength. If this is the case, then the possibility exists to develop an
empirical surface (corrector surface) which relates a given gravimetric geoid model to the
reference system of GPS ellipsoidal heights, and to the vertical datum of one’s orthometric
height system. It must be understood that such a corrector surface will be a hybrid product;
containing systematic errors from ellipsoidal, orthometric, and geoidal sources. Insofar as one’s
national ellipsoidal and orthometric height datums are free of bias, then one will develop a
corresponding improvement to the geoid. Insofar as one’s national ellipsoidal and orthometric
height datums are biased, then the associated “improved” geoid will also be biased with respect
to the Earth’s truc geopotential. However, such a biased geoid would have an important
property: it would directly relate ellipsoidal heights in a national system to orthometric heights in
a vertical datum. '

Because of the increasing use of GPS in the United States for both horizontal and vertical
positioning, the National Geodetic Survey (NGS) needs to support the surveying, mapping,
navigational, and Geographic Information System (GIS) communities in obtaining heights in the
North American Vertical Datum 1988 (NAVD 88) using GPS technology. In this paper the
problem of computing an appropriate geoid corrector surface is studied. In section 2, I describe
the theory and approach in computing a national, high resolution geoid model, the component
data sets, and some results. In section 3, I describe the details of GPS benchmark data set used to
test the geoid model. In section 4, collocation is used to compute a geoid corrector surface, and
the new model is then tested against the data set. The results are discussed in section 3, and
conclusions are presented in section 6.
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2. The Gravimetric Geoid Model, G9501

The method for computing the gravimetric geoid model, G9501, is based on the use of
the Fast Fourier Transform (FFT) to evaluate Stokes equation. As described in Schwarz et al.
(1990}, a bandwidth-limited signal is needed for input to the FFT convolution. This mandates
the use of a remove-compute-restore procedure; where gravity anomalies from a global
geopotential model are subtracted from gravity anomaly data, followed by convolution of the
residual anomalies into residual geoid height, and then followed by restoration of geoid heights
from that same geopotential model. Such an approach was used in the GEOID90 and GEOID93
computations for the United States (Milbert 1991a, Milbert and Schultz 1993). Recently, a
greater appreciation has been made of the fact that evaluation of a set of geopotential coefficients
yields a height anomaly, not a geoid height (Rapp 1992). This naturally leads the researcher to
an approach where one first computes a height anomaly model by FFT, and then subsequently
converts the height anomalies into geoid height. This procedure is adopted for G9501.

The FFT requires gridded data. Any gridding procedure is subject to aliasing in the
presence of high-frequency signal. So, one should remove as much predictable, high-frequency
content as possible. For this reason, gridding is performed on terrain corrected, Bouguer
anomalies, Ag;s. For anomalies on land

in2$p] H - B%fﬁ-y+A+C-O.1119H 3.1
[#3

H-H)?
:leszfgdo
2 ST (3.2)

A=0.8658 -9.727-10° H+3.482:10° H* (3.3)
I, =2 R sin({y/2) (3.4)

where

surface gravity, tide corrected, IGSN71 system (mgals)
orthometric height, NAVD 88 datum (meters)

normal gravity on ellipsoid, GRS80 (Somigliana’s formula) (mgals)
atmospheric correction (Wichiencharoen 1982) (mgals)
terrain correction {mgals)

geodetic latitude, NAD 83 (86) datum

semi-major axis, GRS80 (6378137 meters)

normal gravity at equator, GRS80 (978032.67715 mgals)
ellipsoid flattening, GRS80 (0.00335281068118)
0.00344978600308 (GRS80)

density of topographic masses (2.67 gm/cm®)

TINRReON< NG
=N
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G gravitational constant
R mean radius of the earth
W spherical distance

Note the inclusion of the second order term for the normal vertical gravity gradient, derived from
equation (2-124) of Heiskanen and Moritz (1967, p. 79). It has been found that failure to include
this term leads to a 20 cm difference in geoid height across the United States. Details on the
GRS80 system can be found in Mortiz (1992).

The gridding algorithm uses a method of continuous curvature splines in tension (Smith
and Wessel 1990) with tension parameter Ty = 0.75. The method is one which honors the data
and does not display large oscillations in areas without data coverage. The product is a 3' by 3'
regular grid extending from 24°N to 53°N and 230°E to 294°E (66°W to 130°W). Thus, the
grid contains 581 rows and 1281 columns. To provide edge control to the grid, synthetic gravity
anomalies were computed on the geoid, and combined with the ship and terrestrial anomalies.
The synthetic anomalies were obtained by evaluating the OSU91A global geopotential model
(Rapp et al. 1991) in gravity void areas of the oceans In addition, all anomalies are prefiltered
by computing mean value and mean location of the anomaties in 3' x 3' cells centered over the
regular 3' latitude and longitude intersections. This prefiltering step is recommended by Smith
and Wessel to reduce spatial aliasing effects prior to gridding.

The height anomaly, {, of Molodensky theory can be computed through the gradlent
solution (Moritz 1980, p.414)

* _ 3.5

C:if f(Ag +G,)S(p)do = S(Ag " +G)) -
4Ty
where
Hh W (3.6)
G, =— Agdo
SP)= . -4 —65in%+105in2%-(3 —6sin2l§~)1n(5in%+3inzg) (3.7
sin-—
and

Ag*  Molodensky surface anomaly
S(yr) Stokes function
S()  Operator form of Stokes equation
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Under the assumption of a linear relationship between surface anomalies and height, one may
approximate S(G,) = S$(C) (Moritz, 1980, p. 418, Eq 48-30). A more exact equation is derived
by Wang (1993). Tests of the linearity assumption and the higher order terms of the Molodensky
series are made by Li et al. (1995). Since the extra terms found by Wang are included in the
geopotential model of {, we may approximate the G;-corrected, surface anomalies by terrain
corrected, free air anomalies (Faye anomalies), Agr; = Ags +C. That s,

Agr = Agrs + 0.1119H = Ag* +G, . (3.8)

Combining (3.5) with (3.8), we will solve,

R |
:mf[(AgTB+O.1119H)S(I|J)d0 - (3.9)
g

‘Thus, the next step is to restore the Bouguer plate term, + 0.1119H, to the Agy grid, using a grid
of 3' x 3' mean elevations; yielding a grid of Faye anomalies.

Equation (3.9) is solved in a remove-compute-restore procedure using the FFT
formulation of Strang van Hees (1990) in (3.11),

Ag,= Agrr - Agsg (3.10)
RAPAL _ -
.- 43{ F[F(Ag. 4005 ) FIS(p~Gydp A0 (3.11)
SRS G.12)
where
Ag, high-frequency part of gravity anomalies
Agio geopotential model gravity anomalies (OSU91A)
Ad, AL grid spacing
F, F! direct and inverse, two-dimensional, Fourier transforms
¢, high-frequency part of height anomalies
60 geopotential model height anomalies (OSU91A)

and, where Stokes function, S, is evaluated with a mean latitude, ¢,,, and the approximation,
sin Yo = [sin? Ya(dp-p) + sin? Ya(Ap-A,) (cos’d,- sin® Ya(dp-,)) 1% (3.13)
The input grid, Ag,, (580 rows, 1280 columns) had 50% zero padding on all four edges to

eliminate the effect of cyclic convolution (Gleason 1990). No tapering of Ag, was performed,
since the long wavelength part has already been removed. The FFT subroutine has an option
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which exploits the Hermitian symmetry resulting from real valued grids. Thus, doubled
computation speed and storage efficiency was obtained without resorting to Hartley transforms.
Future computations of the convolution in (3.11) will likely use the one-dimensional FFT
formulation of Haagmans et al. (1993). While Haagmans® formulation requires more arithmetic
operations, it is a more exact representation of Stokes integral. For a comparison of different
kernel formulations, consult Li and Sideris (1994).

As a final step, the height anomaly grid, (, is converted to the G9501 geoid height model,
N, by the relation | '

N=C+Ag3h (3.14)
Y

where
Agy simple Bouguer anomaly (Agg = Agrg -C)

Figure 1 displays a shaded relief image of the G9501 geoid height model. The geoid heights
range from a low of -52.3 m in the Atlantic Ocean to a high of -7.4 m in the Rocky Mountains.
As seen in earlier models (Milbert 1991a), significant short wavelength structure is evident.

From the foregoing it is evident that the G9501 gravimetric geoid model is derived from
three data sources: point gravity, digital terrain, and geopotential coefficients. A few remarks
conceming accuracy are appropriate. Over 1.8 million gravity points, both ship and terrestrial,
went into the gridding. The data were a combination of NGS-held data and quality controlled
data from the Defense Mapping Agency. Almost all of the data. were not on monumented points,
and due to the consequent uncertainty in elevation, the anomalies can be considered to have a
nominal accuracy of about 1 milligal (mGal). The digital terrain data came primarily from the
30" point topography database, TOPO30, distributed by the National Geophysical Data Center
(Row and Kozleski 1991). The 30" point data were originally derived from 1:250,000 scale
maps, and are considered accurate to 30 meters (50 meters in the mountains). The 30" elevation
set was used to compute both terrain corrections, and 3' x 3" mean elevations. And, as discussed
carlier, the OSU91A model (Rapp et al. 1991) was used to compute the long-wavelength gravity
anomaly and geoid height grids. The OSU91A model was computed using GEM-T2 coefficients
as a foundation. Approximate estimates of OSU91A geoid error in the U. 8. are £26 c¢m in the
oceans and +38 cm over land (Rapp 1992).

I now close this section by detailing thé computation of the terrain corrections, C, of
Equation (3.2). The terrain corrections were computed on a regular 30" grid by means of the
FFT convolution of Sideris (1985), but altered by the FFT formulation for s of Strang Van Hees
(1991),

C=KF "'[F(H*R] - (2K) H'F "'[F(H)R] +KH *R(0,0) (3.15)
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where, for this equation,

K Gp/2 ‘

EF7  direct and inverse, two-dimensional, Fourier transforms
H grid of elevations

H*  grid of squared elevations

R analytic transform of [, represented by

241/2
)

R= 2% 2 ~2me(ut+y

(3.16)
c

and, where € denotes a small distance to avoid singularity in the formulation.

The grid of input heights (24°- 53°N, 230°- 296 °E; 3480 rows, 7920 columns) was edge-
tapered with a bell cosine function of 1° width, and then zero padded by an additional 3° width
on all four edges. A 50% pad was felt wasteful, due to the rapid decay of the /;® kernel. The
final terrain correction grid was extracted from the output of (3.15), and it spans the region 25°-
51°N, 232°- 294°E. As with the convolution of (3.11), an FFT subroutine which exploits
Hermitian symmetry was used. Terrain corrections at all gravity points in the region were then
computed with bilinear interpolation.

3. The GPS Benchmark Data Set

NGS is engaged in a project to establish a high accuracy Federal Base Network (FBN),
and an associated Cooperative Base Network (CBN), through nationwide measurement of GPS
baselines to 1 ppm accuracy or better. The FBN stations are located at a nominal 1° x 1°
spacing, are surveyed to 1 ppm accuracy, and are maintained at the expense of NGS. A portion
of the FBN is set at a nominal 3° x 3° spacing, and is surveyed to 0.1 ppm accuracy. NGS
encourages individual states to establish additional 1 ppm stations at about 15' x 15" spacing.
These additional stations are designated CBN. The FBN and CBN stations are often observed in
a single cooperative GPS survey, frequently known as a High Accuracy Reference Network
(HARN). These surveys are typically performed on a state-by-state basis. (Milbert and Milbert
1994, Bodnar 1990)

One of the objectives of the FBN/CBN effort is to upgrade the geodetic control within a
state. This is done by occupation of existing high order control points, connected by classical,
terrestrial measurements, with subsequent readjustment. It is clear that those FBN/CBN points
that are on NAVD 88 benchmarks provide a powerful data set for accuracy assessment and
improvement of geoid models. Figure 2 displays the locations of 1889 points that are leveled
benchmarks with NAVD 88 Helmert orthometric heights, and which have GPS measured -
ellipsoidal heights in the NAD 83 (86) reference system as of June 1995. The irregular
distribution illustrates the state-by-state approach to the surveying, and the different levels of
state participation.
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The FBN/CBN (HARN) survey effort began with Tennessee (1990) and is scheduled to
have all 50 states surveyed by 1997. Over this period major advances have been made in GPS
receivers, processing models, vector reduction software, orbit accuracy, and in the GPS
constellation itself. In addition, the surveys were designed to provide accurate horizontal
control. Data reduction and analysis procedures focused on horizontal accuracies. Typical
observing procedures are static, and involve occupation of a point for about 6 hours on two
different days (three days for 0.01 ppm). Orbit relaxation was used for the 0.01 ppm coordinates
until 1994, when orbit accuracies obviated the need for that particular process. Meteorological
data were not always taken on site. Only recently has the influence of antenna phase center
variation (Schluper et al. 1994) been incorporated into processing software. For these reasons,
the FBN/CBN surveys can not be considered as a homogenous set. And, one must expect a level
of error in the GPS ellipsoidal heights greater than that associated with continuously operating
GPS receivers.

The positioning and navigation communities require coordinates in the NAD 83 (86)
datum. While being primarily a horizontal, classical network, the NAD 83 (86) was controlled
by VLBI and Doppler data sets, and can be considered three-dimensional. Steve Frakes,
National Geodetic Survey, has computed the seven parameter Helmert transformation from NAD
83 (86) to ITRF93(1995.0) with 8 points common to both reference systems. The results are
summarized in Table 1. The RMS of fit was 8 millimeters (mm).

Table 1 - Transformation from NAD 83 (86) to ITRF93(1995.0)
- AX -0.9769 £0.0166 m
AY +1.9392 +£0.0137 m
AZ +0.5461 =£0.0141 m
Oy -0.0264 +0.0006 arc sec
Wy -0.0101 £0.0005 arc sec
Wy -0.0103 +£0.0004 arc sec
scale -0.0068 =£0.0017 ppm

Figure 3 portrays the datum differences between NAD 83 (86) and ITRF93(1995.0)
ellipsoidal heights referred to the GRS80 ellipsoid. It is seen that the non-geocentricity of the
NAD 83 (86) reference frame induces a smooth, systematic difference in ellipsoidal heights. The
values range from -0.28 to -1.64 m, and have an average tilt of about 0.3 ppm. Of particular
note, this tilt is considerably smaller than the 1 to 2 ppm often seen in local intercomparisons.
Summarizing, the ellipsoidal heights in the data set will contain vertical random error, and will
have a long wavelength systematic error component caused by datum definition.
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The NAVD 88 datum is expressed in Helmert orthometric heights, and was computed in
1991. The network contains over 1 million kilometers (km) of leveling at precisions ranging
from 0.7 to 3.0 mmA km, and incorporates corrections for rod scale, temperature, level
collimation, astronomic, refraction, and magnetic effects (Zilkoski et al. 1992). For geoid
analysis in a local region, leveling can be considered nearly error free. Accuracy assessment of
leveling at a national scale is problematic. An interesting result is that shown in Figure 8 of
Zilkoski et al. (1992). Two independent leveling data sets, that of Canada and that of the United
States, match at the 11 cm level or better at 14 points along the Canadian-U.S. border. While
repeatability is not a measure of accuracy, the agreement is remarkable.

The NAVD 88 datum was realized by a single datum point, Father Point/Rimouski, in
Quebec, Canada. The strategy and the value of the constraint were based on a number of factors.
But, the foremost requirement was to minimize recompilation of national mapping products.
Thus, there is no guarantee that the NAVD 88 datum coincides with the normal potential, U,
defined by the GRS80 system. A recent study by Rapp (1995) compares ITRF90 Doppler
positions and a hybrid global geopotential model against various national vertical datums. Rapp
found a mean offset for the NAVD 88 datum of -72 cm with 321 Doppler points. The sense of
the sign is that the zero level surface of the NAVD 88 datum is below the Earth’s geoid, W=U,,
Also of interest is that Rapp found a different offset of ~-38 cm, when comparing a subset of 180
Doppler points in the eastern U.S. The source of this difference is unknown. Summarizing, the
orthometric heights in the data set will contain little vertical random error, but any such error will
be highly correlated. The orthometric heights will also have a systematic offset, caused by
datum definition and possible long wavelength error components.

4. Collocation and Residual Analysis

Based on the forgoing results, it does seem clear that both our national ellipsoidal height
datum (NAD 83 (86)) and orthometric height datum (NAVD 88) are biased with respect to an
ideal geocentric, best-fit, global reference system. Therefore, the computation of an empirical
surface to improve the geoid will lead to a biased geoid in the United States. But, as discussed
earlier, such a geoid model will directly relate NAD 83 (86) and NAVD 88, a strong desire of our
user community. '

Modeling of the geoid and datum difference errors begins by forming residuals, e, in the
sense of '

¢ = G9501 geoid height - (NAD 83 (86) ellipsoid height - NAVD 88 orthometric height).

Next, since collocation requires centered quantities (Moritz 1980, p. 76), a tilted plane model was
computed using the 1889 values of e. Results are shown in Table 2.
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- Table 2 -- Results from Tilted Plane Fit
mean offset -32.8 cm

tilt | 0.36 ppm

azimuth 322°

RMS 24.8 cm

It is seen that the orientation and the magnitude of the tilt closely agree with values
obtained from the NAD 83 (86) to ITRF93(1995.0) datum differences in Figure 3. Further, the
mean offset of -32.8 cm closely matches a combination of a nominal ellipsoid height error of 100
cm and orthometric height error of -72 cm. These results suggests that, aside from an offset, no
additional east-west vertical datum error is evident in the NAVD 88 system.

Figure 4 displays an empirical covariance function fit to the covariance statistics of the
detrended geoid residuals. The fit is made using a simple function of the form

_ (~d2/L%)
C=C,e

(4.1)
where
d = the spherical distance between points (km)
L = characteristic length (km)
C, = function variance (m?)

In Figure 4, the solid line indicates a function fit of L = 500 km and C; = (0.185)> m2. The plus
symbols display the covariance statistics. It is seen that the residual error is sizable and
correlated over a long length scale. Thus, this error (or errors) is a smooth, slowly-varying
effect; but of a magnitude which exceeds our expectations of possible systematic effects in
leveling and GPS.

The detrended residual error, §, is predicted on a 30" x 30’ grid using least-squares
collocation with noise (Moritz 1980, p.102-106). The prediction formula is

L -1
§= Cst(cu + Ctm)

4.)
where
Cy = signal covariance between observations
Cy = signal covariance between predicted signal and observations
C, = covariance of random measuring errors, taken as diagonal and constant: C,=s,2J
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Before the grid is computed, the prediction process is iterated to establish a value of s,
consistent with the residual misfit about the predictions of (4.2). It was found the RMS of
residuals from the prediction step matched the assigned noise when s,%= (6.5)* cm® for the
n=1889 points. The trend reported in Table 2 was then restored to the detrended signal grid,
resulting in the final corrector surface grid (adjusted in sign to provide an additive correction).

Figure 5 portrays a correction that when added to the G3501 geoid model, will directly
relate NAD 83 (86) ellipsoid heights and NAVD 88 Helmert orthometric heights. In viewing
this figure it must be recalled that the GPS benchmarks used to develop this grid all lie within the
U.S. borders; and that highs or lows in the oceans or in other countries are extrapolations, and are
not reliable. With this in mind, it is seen that the predominant effect is a tilt in the northwest-
southeast direction. The correction is smooth within the U.S. and seldom exceeds a meter.

To test the efficacy of this process, the correction was added to the G9501 geoid height
model to produce a new geoid model, G9501C. Residuals were computed between the G9501C
model and the geoid heights inferred at the 1889 GPS benchmarks. The RMS was 6.43 cm, with
no offset or trends applied. Thus, the improvement process is seen to be successful, although the
geoid model is known to be biased relative to the Earth’s geoid.

Of particular interest, the covariance statistics for the G9501C model residuals were
computed, and an empirical covariance function of the form (4.1) was then developed. These
results are portrayed in Figure 6. Unlike Figure 4, which was plotted to a distance of 1000 km,
Figure 6 is only plotted to a distance of 100 km. At this closer scale, a drop is seen in the
statistics from C = (0.064? m 2 at d= 0, down to C = (0.026)* m ? at = 5 km. This reduction is
evidence of an uncorrelated (white-noise) process. For this reason, the empirical covariance
function is fit to the remaining, correlated signal; yielding L = 40 km and C,, = (0.026)* m’.

The source of the 6.4 cm of uncorrelated error is undoubtedly error in the GPS ellipsoidal
heights. Both geoid height and leveling errors are correlated, and leveling is much too precise to
contribute significantly to the value. In addition, free-air gravity anomalies are too well known
in the U.S. (1 to 2 milligal) to be a error source. Parks and Milbert (1995) report a relationship of
3 to 4 mm of geoid error to a milligal of gravity error when using 3' x 3" high resolution geoid
models. As mentioned earlier, error in the GPS ellipsoid heights of the data set was expected.
The 6.4 cm magnitude is not inconsistent with those field survey and reduction procedures.

The correlated error is difficult to interpret. It could be lower order leveling as well as
geoid error. For example, standard errors of Second-Order leveling can range from 2.1 to 3.0
mm/A km, or about 1.5 to 2.1 cm over 50 km. Details on the NAVD 88 weighting system can be
found in Zilkoski et al. (1992). A detailed analysis of variance of these errors against gravity,
GPS, and leveled benchmark accuracy is deferred to future research.

This section is closed by computing one final grid. There is a component of the corrector
surface known to come from the datum definition of NAD 83 (86), and this component is known
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to the subcentimeter level. It is instructive to consider the corrector surface with the ellipsoidal
datum component removed. This “geocentric corrector” will show the NAVD 88 datum error
combined with geoid and regional GPS error. And, based on the statistics above, the surface
should be accurate at about a 2.6 cm RMS. Figure 7 illustrates the geocentric corrector relating
the G9501 geoid model and the NAVD 88 datum. An average offset of around -75 cm is seen,
which agrees with the -72 cm value of Rapp (1995). However, the -38 cm value reported for the
eastern United States is not evident. Further discussion of this figure is deferred to the next
section.

5. Discussion

Figure 6, which shows the covariances of the differences between the GPS benchmarks
and the G9501C corrected model, demonstrates the efficacy of the least-squares collocation
procedure. The remarkable part is that it works so well. The detrended, correlated error was
reduced from an RMS of 24.8 cm (Table 2), to an RMS of 2.6 cm, in the presence of 6.4 cm
RMS Gaussian noise (Figure 6). Further, this result was obtained from a very smooth empirical
covariance function of =500 km. The error absorbed in the corrector surface (which has geoid
model, NAVD 88, and GPS sources) falls into two distinct spectral domains: long-wavelength
(~500 km) and short-wavelength (~40 km). This suggests at least two different sources.

Interpretation of the corrector surface of Figure 5 is difficult. But the general trend (tilted
plane fit in Table 2) is clearly rooted in the height difference between the NADS3 (86) and the
ITRF93(1995.0) datums. Thus, interpretation of Figure 7, the geocentric corrector, is somewhat
easier, since it has this error source removed.

The first remark concerning Figure 7 is that it is only valid over land, and that few GPS
benchmarks contributed to its character in the central and northeast U.S. The dominant structure
is an east-west tilt in the Pacific Northwest area, which then slopes back down across Montana.
While the western part of Washington State is mountainous, the eastern part contains the
Columbia Basin and is fairly flat, yet it shows greater tilt. In addition, other states which have
equivalent or greater relief and which are well-sampled by GPS benchmarks, such as Colorado,
show less structure. The problem may be related to GEQID90 and GEOID93 model problems in
southern British Columbia, which are thought to be caused by some older digital elevation data.
The signal is much too large to be solely due to NAVD 88 leveling error.

Next, consider the Gulf of Mexico. Over 50 cm of upward tilt is seen along Florida. This
problem was originally identified by GEOID90 and GEOID93, and it may be related to the
OSU91A geopotential model. About +1 meter of residual height anomaly was applied in the
restore process (3.12); yet that seems to be 50% too small. By contrast, the tilt along southern
Louisiana and the Gulf coast of Texas, has the opposite sign. The sense of this sign is consistent
with subsidence, and there arc arcas here known to subside at over 1 cm /year. This could
explain a portion of the differences along the coast.
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A broad, 30-50 ¢cm feature is seen near the Great Lakes, over Minnesota and Wisconsin.
However, there are relatively few GPS benchmarks in this location. The GPS survey in
Wisconsin dates from 1991, and was not performed to the accuracy customary for state upgrade
projects. While the mid-continent gravity high is in the region, it is a narrow, linear feature, and
is at a right angle to the elongation of the broad feature. The density variation of the Great Lakes
was not incorporated in the computations, but Martinec et al. (1995) show the effect to be in the
vicinity of +1 cm.

It is seen that Figure 7 is very suggestive, although its interpretation is problematic.
Issues from the GPS control, the NAVD 88 leveling, the theory and processing of the G9501
model, and the OSU91A model all contribute to the figure. Work will continue on this analysis,
aided by new data and theory. The upcoming global geopotential model (WHS96), jointly
computed by Goddard Space Flight Center and Defense Mapping Agency (Rapp and Nerem
1994), is expected to significantly reduce commission error. The GPS control survey and
upgrade program will provide additional GPS benchmarks in the void areas. Ties to
continuously operating GPS receivers will add valuable checks to new and existing GPS heights.
Additional analysis is needed on digital elevation data sets, and on models to support accurate
GPS ellipsoidal heights. It is envisioned that as advances are made in theory, processing, and
data coverage, that it will become possible to build an accurate map of NAVD 88 leveling error.
Figure 7 represents an early step in that direction.

It is a natural tendency for geodesists to desire national control networks based on a
geocentric reference system. This preference will mean increased importance of the ITRF
system in the mapping sector of the U.S. This prominence will, in turn, highlight a desire for a
more accurate orthometric height system. While issues on datum redefinition are questions for
the future, the synergies in improving orthometric, eliipsoidal, and geoid height are undeniable.

The National Geodetic Survey is planning to compute and distribute two new high-
resolution geoid models in 1996, after the release of WHS96. One model, G96SSS, will be a
purely gravimetric model, and is intended for scientific purposes. The other model, GEOID96,
will incorporate a datum corrector surface derived from GPS benchmarks. While GEOID96 will
be biased with respect to the Earth’s true geopotential, its bias will allow the direct conversion of
ellipsoidal heights in the NAD 83 (86) reference system to orthometric heights in the NAVD 88
datum. By the release of two models, NGS will support scientific research, as well as meet our
responsibilities to the surveying, mapping, navigational, and GIS communities.

6. Conclusions

A geoid model, G9501, was computed by means of a 2-D FFT convolution about the
OSU91A global reference. Intercomparison with 1889 NAD 83 (86) GPS benchmarks with
NAVD 88 Helmert heights identified a 24.8 cm RMS variation about a tilted plane trend of 0.36
ppm. This tilt is almost completely described by the datum difference between the NAD 83 (86)
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system and the ITRF93(1995.0) reference frame. A simple, empirical covariance function with a
long characteristic iength, =500 km, was found to fit the detrended differences between the
geoid model and the GPS benchmarks.

The least-squares collocation predictor lead to the development of a smooth datum
corrector surface. Applying this surface to the geoid model produced a new geoid model,
(G9501C. This model is biased from a geocentric geoid, but it successfully relates the NAD 83
(86) datum to the NAVD 88 datum. Evaluation of the covariances of the differences between
G9501C and the GPS benchmarks indicates an accuracy of 2.6 cm RMS with a characteristic
length of L=40 km. '

Gaussian noise in the GPS ¢llipsoidal heights of NAD 83 (86) 1s 6.4 cmm RMS. This is
due to a variety of sources, including GPS data reduction and analysis procedures, receiver type
and age of surveys, orbit error, meteorological effects, and unmodeled variation of antenna phase
center. The figure is more than double the error ascribed to geoid and/or leveling, and highlights
the need to improve GPS ellipsoidal height accuracies.

It is seen that geoid error falls into two distinct spectral domains. One domain is long-
wavelength (~500 km), while the other is short-wavelength (~40 km). This suggests at least two
different error sources. It does prove that high-resolution geoid height models are very precise,
and can support local survey requirements.

Computation of a geocentric corrector surface, by application of an NADS3 (86} to
ITRF93(1995.0) datum transformation, yielded a map which more clearly expresses NAVD 88
datum error (along with other error sources). The result confirmed the -72 ¢cm bias in NAVD 88
found by Rapp. However, the -38 cm value reported for the eastern United States is not evident.

Future analysis is needed to resolve the structures seen in the geocentric corrector surface.
This will involve digital elevation analysis, use of the forthcoming WHS96 global geopotential
model, and the incorporation of additional, higher accuracy GPS benchmarks from statewide
upgrade projects.
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Figure Captions

Figure 1 -  Shaded Relief of G9501 Geoid Height Model.

Figure 2 - 1889 Leveled Benchmarks with NAVD 88 Helmert Orthometric Heights and GPS
Ellipsoidal Heights in the NAD 83 (86) Reference System

Figure 3 --  Datum Differences Between NAD 83 (86) and ITRF93(1995.0) Ellipsoidal
Heights Referred to the GRS80 Ellipsoid, Contour Interval = 4 ¢m.

Figure 4 --  Empirical Covariance Function and Detrended Error Statistics.

Figure 5--  Corrector Surface for the G9501 Geoid Height Model Relating NAD 83 (86) and
NGVD 88, Contour Interval = 10 cm.

Figure 6 --  Empirical Covariance Function and Error Statistics for G9501(Corrected).

Figure 7--  Contour Plot of Geocentric Corrector Surface Relatlng G9501, ITRF93(1995 0),
and NGVD 88, Contour Interval = 5 ¢m.
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NAD83(86) to ITRF93(95) Ellipsoid Height
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FFT GEOID COMPUTATIONS IN CANADA

Michael G. Sideris
Department of Geomatics Engineering
The University of Calgary
Calgary, Alberta, Canada

ABSTRACT

The paper outlines the currently available FFT methods of geoid computation and their
application in recent geoid computations in Canada. More specifically, the various ways of
evaluating the Stokes integral (e.g. using planar approximation, mean-latitude spherical
approximation, analytical kernel spectrum, and rigorous one-dimensional spherical evaluation)
are presented and intercompared. The applicability of these methods to the computation of the
direct and indirect effect of the topography is discussed as well, and recommendations are
made for improving the accuracy, memory requirements, data handling and efficiency of the
techniques. Finally, recent FFT-based solutions for the Canadian geoid are compared to other
geoid solutions and to results from GPS and leveling on benchmarks. Accuracy estimates are
given, indicating that, with proper treatment of datum discrepancies, the absolute geoid
undulation accuracy can reach a level of 4 cm while the relative accuracy can reach sub-ppm
levels for baselines with length varying from tens of kilometres to more than 1000 kilometres.

1. INTRODUCTION - GEOID AND TERRAIN REDUCTIONS

Stokes' boundary value problem (BVP) is the gravimetric determination of the geoid I, which
is the equipotential surface of the Earth's gravity field corresponding to the mean sea level.
Stokes problem deals with the determination of a potential, harmonic outside the masses, from

gravity anomalies Ag given everywhere on the geoidal surface. Consequently, since no masses
are allowed outside I, the topography of the Earth must be eliminated mathematically.
Assuming that I"encloses all masses, the classical BVP is to determine the disturbing potential

T, which satisfies Laplace’s equation under the a boundary condition on I, which is given by
the "fundamental equation of physical geodesy" (Heiskanen and Moritz, 1967). Dividing T by

the normal gravity y(Bruns' equation), we obtain the geoid undulation N as

T R 1
N=—=——[| AgS(y)do = —S5Ag
y 4y -/;f y )

where S is Stokes' operator, R is the mean radius of the Earth, and ¢ denotes the Earth's
surface. S(y) is Stokes' function and is given by the expression

S(y) = m—6sin%+ I1-5cosy — 3cosw1n(sinlg—+ sin’ _sz), (2)
sinz% = sin® (PP; 9 + sin Ap = COSPp cOSP. 3)

wis the spherical distance between the data point (¢, A) and the computation point (@p,Ap) .
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Equation (1) gives N provided that there are no masses outside the geoidal surface. One way to

take care of the topographic masses of density p (usually assumed constant) is Helmert's
condensation reduction, which is used here as a representative from a number of possible
terrain reductions. It is applied as follows: (a) remove all masses above the geoid; (b) lower
station from point P on the Earth's surface to point Po on the geoid using the free-air reduction

F: and (c) restore the masses condensed on a layer on the geoid with density o = pH, where H
is the orthometric height. This procedure gives the gravity anomaly on the geoid computed

from the expression Ag, = Agp —Ap+F+Ap = Agp+F+ 5A = AgfA +6A. AgFA =(Agp +F)
is the free-air gravity anomaly at P, Ap is the attraction of the topography above the geoid at P,
and Ag, is the attraction of the condensed topography at P,,.

Obviously, the attraction change §A is not the only change associated with this reduction. Due
to the shifting of masses, the potential changes as well by an amount 0T = T, - Tg, called the
indirect effect on the potential, where T, is the potential of the topographic masses at P, and
Ts, isthe potential of the condensed masses at P,,. Due to this potential change, the use of eq.
(1) with Ag, produces not the geoid but a surface called the co-geoid. Thus, before applying
Stokes' equation, the gravity anomalies must be transformed from the geoid to the co-geoid by
applying a small correction 84g = dyohdI/ycalled the indirect effect on gravity; this is usually
small (84g < I mGal) and is omitted in most cases. The final expression giving N can now be
written as

N=-;7S(Ag“ +5A+5Ag)+§6T= N° + 8N, (4)

where NC is the co-geoidal height and 8N is the indirect effect on the geoid. The attraction
change is equal to the classical terrain correction c; for more discussion, see Wichiencharoen
(1982), Wang and Rapp (1990) and Sideris (1990). In linear approximation, using k for

Newton's gravitational constant and I = [(xp - x)? + (yp - y)2]12,

1 H?>-H} H-H
8 =c=kp fgf ——Ldxdy~ Hpkp fEf —Tﬁdxdy, (5)
& kp rrH® —H}
&V= *—’}Iﬁﬂg—g’;/f‘-—l_g—})—dxdy (6)

The use of eq. (1) requires gravity anomalies all over the Earth for the computation of a single
geoid undulation. Obviously, this is impractical to say the least and thus, in practice, some
modifications of the technique are necessary. Firstly, we can only apply eg. (1) in a limited
region. Then, the long wavelength contributions of the gravity field will not be present in the
results and must be computed in another way. They are provided by a set of spherical harmonic
coefficients (geopotential model). Secondly, the integral is discretized and 1s computed as a
summation using discrete data. Due to the density of the gravity data, which on the average is

no better than 5'  5', the short wavelengths will not be present (aliased). They are computed

by using topographic heights, which are usuvally given in the form of a 1 km X 1 km Digital
Terrain Model (DTM). The computation of geoid undulations N by combining a geopotential

model (GM), mean free air gravity anomalies Ag™, and heights H in a DIM is based on the
following formula:

N=NM  N% +NH, Ag = AgFh — Agt — AgH. (N
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Although geoid undulations are more sensitive to the low to medium frequencies of the field, in
rough topography all three data sets are necessary for estimating N. Note that the gravity
anomalies used with Stokes' equation have the contributions of the topography and the GM
removed. Thus, the remove (preprocessing) stage involves the computation and removal of the
GM and terrain contributions from the free-air gravity anomalies, and the restore
(postprocessing) step involves the restoration of the GM contribution and the terrain

contribution to N via the indirect effect term N¥. With Helmert's condensation reduction, AgH
= -84 = -c and N¥ = éN = 3T77.

In épherical approximation, the geopotential model part of Ag and N is given by the following
formulas (see, e.g., Kearsley et al., 1985):

Pnas n
AgM =G Y (n—1) 3 [C,yc0s mAp + Spysin mAp JEyy(sin @p), (8)
n=2 m=0 . |
Rpar N
N =R} 3'[C,cos mAp + Sppsin mAp [Fpy(sin @p), ©)
n=2m=0

where Cppm Spm are the fully normalized geopotential coefficients of the anomalous potential,

P, are the fully normalized Legendre functions (Heiskanen and Moritz, 1967), p and A are
geocentric latitude and longitude, fmay is the maximum degree of the geopotential model, and
G is the mean gravity of the Earth.

2. GEOID UNDULATIONS BY FFT
2.1. Planar Approximation Of Stokes' Integral

Point gravity anomalies as input. The geoidal height N4 computed from Ag's given by
eq. (1) in an area E can be expressed in planar approximation by a two-dimensional

convolution integral (Kearsley et al., 1985). Using M x N gridded point gravity anomalies
with spacing Ax and Ay, the geoid undulation at a point (xg,y;) can be evaluated by the
following discrete convolution, denoted by *:

] M-1 N-1
N (x,3) =2—Z D Ag(x; )y (x — %,y — ¥ ) Axdy
Y i=0 j=0 (10)

AxA
= "‘_yAg(xk’ yi) ¥ In(xg, y1),
21y

[(xy— X2+ (yy = ;2 T2, % % 0r Y# 3
0 = x; and y&= yj'

IN(xk“xi:M—yj)={ (11)
To account for the singularity of Iy, the kernel is set to zero at the origin (see eq. 11) and the

contribution to N4g of the gravity anomaly at the computation point must be evaluated
separately. Approximately, this contribution is (Heiskanen and Moritz, 1967; Schwarz et al.,
1990)
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~ AxAy
AN (x,, y) = Ag(x,, V). . o
(X3, 1) e g(xz, y1) (12)

A slightly better approximation for dN%¢ can be found in Haagmans et al. (1993). Geoid
undulations can then be evaluated by the two-dimensional (2D) FFT as follows:

N2 (x, y,) = %ZF"{F{Ag(xk, ) Fily (e y)l} |
i (13)
= 'ALAXF—I[AG(um’ vn) LN(um’ vn)]r
2my

where F denotes the direct and F-1 denotes the inverse 2D discrete Fourier transform (DFT),
and u and v are the frequencies corresponding to x and y, respectively. AG has to be computed
by the DFT while Ly can be evaluated cither by the DFT or by the continuous Fourier

transform (CFT) which gives Ly = ( W’ + vz)-m =g’ , where g is the radial frequency, and then
g q q q

be discretized for use in eq. (13). Ly defined as q'l is called the analytically-defined spectrumm
of Stokes' kernel. Although the analytically-defined spectrum has some advantages compared
with the discrete one, such as no DFT required for its evaluation and no effect of leakage and
aliasing, it is not suitable for the computation of discrete convolution if we want the results to
be the same as those from numerical integration. For more details and numerical results, Li
(1993) and Sideris and Li (1993) should be consulted.

Equations (10) and (13) show clearly how FFTs can be used for the efficient evaluation of
convolutions. Thus, in the sequel, we will only show how to give convolution form to the
various integrals of interest without writing explicit formulas for their FFT-evaluation.

Mean gravity anomalies as input. If the input data are M X N gridded mean gravity

anomalies 4g , eqs. (10) and (13) still hold with Az and 4G in place of Ag and AG, and Ty
and Ty in place of AxAyly and AxAyLy, respectively, with

— X +Ax/2 py+Ay/2 1
lN(xk,yl)sz ft dxdy

xp-Ax/2 y,—Ay/ZJ_x;_+_y_2- (14)
= xin(y+[2 +3%) +yinx A2+ fERTNIRE

We call Ty the mean Stokes' kernel spectrum. An alternative approach can be found in Sideris

and Tziavos (1988).

2.2. Spherical Form Of Stokes' Integral

The approximations introduced by the planar form of Stokes' integral can be minimized or

avoided by using the spherical Stokes' integral. With gridded gravity anomalies, taking into
account eq. (3), the spherical form of Stokes' integral, i.. eq. (1), can be written explicitly as

N0, 0= E S S ag(o, A @ A )AQAA, (15)
((pb k) - 4,_‘2;20 g((Pj: i)cosqoj S((pb ke (PJ! I)A(pA .
j=0i=

With different approximations of Stokes’ kernel function on the sphere, geoid undulations can
be evaluated at all gridded points simultaneously by means of either the one-dimensional {1D)
or the 2D fast Fourier transform.
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Approximated spherical kernel. In order to transform eq. (15) into a convolution
integral, Strang van Hees (1990) suggested to approximate cos@pcosQ in eq. (3) by cos? @, or
by the slightly more accurate cos?@ - sin¥(¢p - §)/2, where @ is the mean latitude of the
computation area. In this case, ¢q. (3) becomes

- A, —A
sint Y. = sin? P29 | sin2 2L cos? Q
- A, -A - (16)
= sin® PP | 2 le (cos’ @ sin® 14 (0)
and eq. (15) takes the convolution form
A R N=iM=I . _
Ny d)=—— 3 Y Ag(0;, Ai)cos@;S(9; ~ ¢, A — 4, @) ApAL
j=0i=0 an
RAQAA

[ Ag(@y, Ay ) cos @] * S(9p, A, @)-

The approximation of eq. (15) by eq. (17) makes it possible to compute geoid undulations over
large areas on the sphere on all grid points simultaneously by using the two-dimensional
Fourier transform. Its disadvantages are that it requires considerable amounts of computer
memory because 100% zeros are padded in the latitude and longitude direction, and that
additional errors are introduced due to the approximation made on the kernel function. This
error can be minimized by the use of the multi-band spherical FFT method proposed by
Forsberg and Sideris (1993), which is briefly described below.

Approximated Spherical Kernel With Many Bands. Since the errors of the above
approximation increase from the centre of the area to the north and south edges, Forsberg and

Sideris (1993) proposed to subdivide the area in I narrow overlapping bands along the
Jongitude direction. To improve the approximation in eq. (16), cos@pcos can be written as

cos@pcos{p — (pp - @)]. In each sub-area, @p can be considered as constant and again taken as
equal to the mean latitude @,. In this case, eq. (3) is approximated by

— A, —A
it ¥ 42 2%

= sin2 + Sin

cos®, cos[@, — (@, —}]
-0 2 Ap =4 =

4 .
2P " 4 sin® P

[cos® @, cos(P, — @)

= Sin

+cos @, sin@, sin(@, — 9)]

and again the computations are done using eq. (17) for each band (with @, in place of @).
Note that for all points along the parallel of mean latitude, an exact solution to the spherical
Stokes' integral is obtained.

Rigorous Spherical Kernel. To overcome the limitations of the previous 2D FFT method,
Haagmans et al. (1993) made use of the fact that it provides the exact undulations for all the
points along the parallel of mean latitude. Using this property and the addition theorem of the
Fourier transform, they came up with an approach which allows for the evaluation of the true
discrete spherical Stokes integral without approximation, parallel by parallel, by means of the

1D FFT. In fact, for results on a certain parallel of latinde ¢ using data along a paraliel of
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latitude @, y changes only with Ax-A; and Ag changes only with A; and thus the 2D discrete
Stokes integral of eq. (15) takes the form

N-1 M=I

N(pLAi) = g2 X [% 88(0;, ) cos @S0, by — M)ARIAG, @1 = @1, @z @y (19)
j=0 i=

The brackets in eq. (19) contain a one-dimensional discrete convolution with respect to A, i.e.,
along a parallel, and can be evaluated by the one-dimensional (1D) FFT. By employing the
addition theorem of DFT, the discrete Stokes integral for the fixed parallel can be evaluated by
(Haagmans et al., 1993)

RAQAA - NI
N(("l:/'lfk):" 475,},' — F; {IZOFI{Ag((Pj,lk)cosqu}FI{S((D[,Q)j,lk}}, @ =05,9Q3.... PN (20
J:

where F; and F7* denote the 1D Fourier transform operator and its inverse. Equation (20)
yields the geoidal heights for all the points on one parallel which are identical to those obtained
by direct summation using eq. (15) point by point.

The major advantage of the 1D spherical FFT approach is that it gives exactly the same results
as those obtained by direct numerical integration. In addition, it only needs to deal with one
one-dimensional complex array each time, resulting in a considerable saving in computer
memory as compared to the 2D FFT technique discussed before. Moreover, the adoption of
EFT makes it far more computationally efficient than the classical direct numerical integration.
Detailed comparisons of various techniques can be found in Haagmans et al. (1993) and
Forsberg and Sideris (1993).

To obtain results which are identical to those from numerical integration, proper zero-padding
must be applied to the data; for details, see Sideris and Li (1992 and 1993) and Li {(1993). This
is true for both the spherical and the planar approximations of Stokes' integral. They also hold
for the terrain correction integrals that will be discussed below and, in general, for any other
gravity field convolution integrals evaluated by FFT.

3. FFT-EVALUATION OF TERRAIN EFFECTS

Defining the kemel function Ii(x,y) = (x* + y2)-32, the terrain effects given by eqs. (5) and (6)
can be written in convolution forms. The singularity of the I. kernel function is again bypassed
by setting 1.(0,0) = 0. This is of no practical consequence because these integrals contain not
the heights but the height differences which are zero when x = xp and y = yp. For a detailed
discussion on the singularity of the terrain correction formula, Klose and Ilk (1993) should be
consulted.

Point Heights As Input. Using M x N gridded point heights, eq. (5) can written as

Mol NZD H(x,y;) - H(x,31)

1
(X Y1) = Ekpz 2

im0 jool(xk —x;)% + (v —)’j)2]3/2
MI D H(xg,yp) — Hixgy)

—H(xpykp Y, Y

S Solxi—%) + (- ;) P2

AxAy

AxAy
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] .
= EkprAy{Hz(xk, yi) ¥l (X, 1) — H(x, y M o(xp, y) * L (X, Y1) @21)
— 2H(x, Y[ H(x, 1) * L x4, y) = H(xg, yy o x, 3 ) # L(x. YOI,

where o(x;,y;) has the value of one, i.. o(xpy)) = 1, for all grid points.

Similarly, the indirect effect on the geoid, which is given by eq. (6), can be written in the
convolution form

- - 3 3
mhp o kp MI N H(x,y;) = H (%, 1)

ON(xp,y)=——H" (%, ) ——

R Y o 6750 ,-é[(xk~x,-)2+(y;—y,-)213’2

Axdy

o L (22)
= _—YﬂHZ(Xk’ )= B%Axﬁ\y{H3(xk’ Yo * L% 1)

- H (x, y [0 30, y) # Lo 33, YOI

Mean Heights As Input. If the input are M x N mean gridded heights A , the above
equations still hold with H * in place of H”, n = 1 ,2,3, and I, in place of AxAyl., with

x, +Ax/2 fy, +4y/2 1 (x? +y?)!2

lc(xk:yl)zka_m/z y—Ay/2 (x2+y2)3/2 xy

xp+Ac/ 2y +48y/2 (23)
xp—Ac/ 2y -8yl 2

It is interesting to mention here that the above equations can also be evaluated by using an
analytical kernel spectrum. Although they then require fewer Fourier transformations, this
approach is not recommended for numerical evaluations. The reasons are the same as those
given for Stokes' integral. Thus, to obtain by FFT identical results as those from numerical
integration, the discrete kernel should be used and all convolutions should be evaluated using
proper zero-padding; see more details in Li (1993), Sideris (1994b), Li and Sideris (1994a and
1994b).

Gravity terrain corrections can also be computed by the three-dimensional fast Fourier
transform (3D FFT) method. A detailed description of the 3D FFT method along with
numerical results can be found in Peng (1994) and Peng et al. (1995).

4. COMPARISON OF N OBTAINED WITH DIFFERENT KERNEL
FUNCTIONS

To investigate how seriously the approximations of Stokes' kernel affect the results, geoid
undulations were computed in all of Canada. The data used were 5' X 5' Faye gravity

anomalies (terrain effects were computed using a 1 km X 1 km DTM) and the OSU91A
geopotential model. In the computations, 100% zeros (50% to each side) were padded around
the gravity anomalies in both the East-West and the North-South directions when the 2D FFT
method was used, and only in the East-West direction when the 1D FFT method, i.c., eq.
(20), was used. The Canadian geoid computed by the 1D FFT method is shown in Figure 1.

The statistical information of the differences between using the "rigorous spherical kernel”
(RSK), i.e. egs. (2) and (19}, and the various approximate kernels is summarized in Table 1.
More specifically, ASK stands for "approximated spherical kemnel" (see eqs. 16, 17), APK
stands for "approximated planar kernel" (see egs. 10 and 11), and ADK stands for "analytically
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Figure 1 - Contour map of the UC93 Canadian geoid

defined kernel" spectrum, i.e., Ly = g'/. As can be seen from Table 1, the geoid undulation
errors introduced by the use of the approximated kernels are about 1 to 2 m in terms of
maximum or minimum values. It is obvious that these errors are not negligible for precise
geoid determination. According to Table 1, the approximated planar kernels, especially the
analytically-defined kernel spectrum, introduce 50% larger geoid errors as compared with those
due to the use of the approximated spherical kernel. This is because the planar kernels only use
the first term in the spherical Stokes kernel, and neglect the meridian convergence. More

explanations about this can be found in Sideris and Li (1993) and Li (1993).

Table 1
Comparison of geoid undulations from different kernel functions, in metres
Differences Max Min Mean RMS o}
RSK - ASK 1.32 -0.98 -0.03 0.20 0.19
RSK - APK 0.97 -1.42 -0.11 0.31 0.29
RSK - ADK 1.47 -1.89 -0.09 0.32 0.31
APK - ADK 1.08 -1.23 0.01 0.07 0.07

It was found that the geoid errors due to the use of the approximated spherical kernel were
relatively larger in the north and the south boundary areas than in the area around the centre

latitude. This was the result of using cosZ g instead of cosQPpcosey, while the differences
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between cos? @ and cos@pcosg were smaller in the area around the central latitude of the

computation area. On the other hand, the geoid errors due to the use of the planar Stokes
formula had a tendency of decrease from the north to the south area. This was expected
because the neglect of the meridian convergence has a more serious effect at higher latitudes.

5. GEOID COMPARISONS AT GPS BENCHMARKS

First, comparisons were made on 280 benchmarks in the mountainous province of British
Columbia (B.C.) using different kernel functions. Figure 2 shows the locations of the GPS
stations on benchmarks in Western Canada. Table 2 summarizes the statistics of the differences
before and after fitting out the systematic biases and tilis by using a four-parameter
transformation; see Heiskanen and Moritz (1967) and Sideris (1993). Table 2 indicates that the
overall agreement between the gravimetric and the GPS/leveling-derived geoid is around 30 cm
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Figure 2 - Location of GPS stations in Western Canada (geoid contour interval: 2 m)

in terms of standard deviation (&), and there exist systematic biases between the two kinds of
geoid representations with a mean value of about 3 m. This systematic biases are due to the
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systematic difference between the gravimetric geoid and the orthometric height datum as well as
the long wavelength errors in the gravimetric geoid. After fitting out the systematic biases, it
can be seen that there is 2 7 cm improvement for the standard deviations of the differences.
The remaining differences, mainly due to the effect of the high frequency errors in the reduced
Faye gravity anomalies, the errors in leveling and in GPS-derived ellipsoidal heights, and the
geopotential coefficient errors, can only be further reduced by improving the data accuracy and,
probably, by using a smaller grid size for the gravity anomalies and heights.

Table 2
Comparison of the gravimetric with the GPS/leveling-derived undulations in B.C., in metres,
before and after fit (in parentheses) for different kernel functions

Differences
GPS/leveling - RSK | -1.93 (1.20) 434 (-0.74) | -3.23 (0.00) | 3.25 (0.24) 0.30 (0.24)
GPS/leveling - ASK | -2.10 (1.08) -4.20 (-0.71) | -3.26 (0.00} | 3.27 (0.23) | 0.29 (0.23)
GPS/leveling - APK | -1.75 (1.17) -4.12 (-0.75) | -3.05 (0.00) | 3.07 (0.26) 0.33 (0.26)
GPSIlevelinﬁ - ADK | -0.85 (1.68) | -4.42 (-1.04) | -2.93 (0.00) 2.95 {0.36) | 0.38 (0.35)

Table 2 also shows that, for absolute geoid determination, all kernel functions, except for the
analytically-defined one, have a similar performance in terms of either the root-mean-square
differences or the maximum and minimum differences. This, however, does not imply that the
use of the approximated kernel functions does not introduce additional errors. The similar
performance indicated by Table 2 is because the GPS/leveling benchmarks used in the
comparisons are located within the mean latitude area of the whole computational region, where
the geoid errors due to the use of the approximated kernel functions are much smaller. The use
of the analytically-defined kernel spectrum results in a 10 cm larger root-mean-square
difference, and about 90 cm larger range between maximum and minimum differences.

0 I ' r r T I x T T r I

0 500 distance (km) 1000 150C

Figure 3 - Relative differences between the gravimetric and the GPS/leveling-derived geoid
on 280 benchmarks in British Columbia (after fit) for different kernel functions
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Figure 3 shows the relative differences between the two geoid representations in ppm.
According to this figure, the use of both the spherical kernels and the approximated planar
kernel provides similar relative differences: about 1 to 4 ppm for distances of 20 km to 200 kmm,
and 0.4 to 1 ppm for distances of 200 to 800 km. The use of the analytically-defined kernel
spectrum results in a little bit larger relative differences.

Comparisons were also made in the three GPS/leveling networks in the mostly flat province of
Alberta. Table 3 gives the statistics of the differences, and Figure 4 shows the relative
differences, in ppm, after fitting out the systematic biases, and intercompares them to those
obtained in British Columbia. Table 3 shows that, in Alberta, the gravimetric geoid agrees very
well with the GPS/leveling-derived geoid. After fit, the maximum difference is only about 15
cm while the standard deviation is less than 6 cm. The relative agreement between the geoids in
Alberta, as shown in Figure 4, is about 0.5 to 1.4 ppm for distances between 30 and 100 km,
and about 0.3 to 0.5 ppm for distances of 100 to 200 km. Similar relative agreements have also
been achieved in other computation areas, such as the Great Slave Lake area in the Northwest
Territories (She, 1993; Sideris, 1993). This relative agreement is of the same order as the
required relative accuracy of the first-order leveling according to the Canadian specifications for
vertical control networks (Schwarz et al., 1987).

Table 3
Comparison of the gravimetric with the GPS/leveling-derived undulations in Alberta, in metres

Area (# of points) Max Min | Mean RMS o

"Northern Alberta (31) ]-0.37 (0.15) | -0 ™0.54 (0.00) | 0.54 (0.06) | 0.08 (0.00)
Central Alberta (52 |-0.95 (0.18) | -1.44 (-0.12) [-1.13 (0.00) | 1.14 (0.06) | 0.11 (0.06)
Southern Alberta (106) | 0.05 (0.14) | -0.90 (-0.11) {-0.39 (0.00) | 0.43 (0.04) | 0.19 (0.04)
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Figure 4 - Relative differences between the gravimetric and the GPS/leveling-derived geoid
in Alberta and British Columbia (after fit)

There are many reasons that make the discrepancies between the gravimetric and the
GPS/leveling-derived geoid much larger in British Columbia than in Alberta. For example, the
accuracy of the geometric leveling may be poorer in the mountainous areas of British
Columbia. The main reason, however, is probably due to the lack of gravity observations in
the north-west area around the GPS/leveling network. When the comparisons were done only

on 203 more reliable benchmarks in the southern part of British Columbia, after removing the
systematic biases, the absolute difference (16) between the two geoid representations was only
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10 cm, and the relative difference was 1.3 to 4.1 ppm for distances of 20 to 100 km, and 0.5 to
1.3 ppm for distances of 100 to 240 km (She, 1993; Sideris and She, 1995).

Finally, the gravimetric undulations computed by FFT were compared to other geoid solutions
available in Canada. Six geoid models were used in the comparison. These models are:
OSU91A, UNB90 by the University of New Brunswick, GSD91 by the Geodetic Survey
Division of Canada, UC92 (planar 2D FFT) and UC93 (spherical 1D FFT) by the University
of Calgary; for a detailed description, consult Sideris (1993), She (1993) and Sideris and She
(1995). Both the absolute comparisons and the relative comparisons were made between the
gravimetric geoid and the GPS/leveling-derived geoid.

Table 4
Differences between GPS/leveling and gravimetric geoid undulations in B.C.
after a datum fit, in meters (203 stations)

GEOD
MODEL MN Max MEAN RMS | ©
=$’=—’—_——_"__"—_—_'“—
OSU9%1A -2.46 2.40 0.00 0.77 0.77
UNB90 -1.47 2.19 0.00 0.71 0.71
GSD91 -0.41 0.31 0.00 0.15 0.15
uco2 -0.32 0.29 0.00 0.12 0.12
UC9o3 -0.19 0.18 0.00 0.10 0.10
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Figure 5 - Relative undulation accuracy in B.C. (203 Stations)

A comparison of different geoid models, as seen from Table 4 and Figure 5 which show the
results after a datum fit at the 203 most reliable benchmarks in B.C., indicates that the uCo3
geoid had the best agreement with the GPS/leveling data. It is also evident that the addition of
Jocal gravity data and height data improved the reference geoid computed from the OSU91A
geopotential model significantly over distances from tens of kilometres to over 1000 km; see
also Schwarz et al. (1987). The improvement was especially large over short and medium
baselines (below 400 km) in rough terrain such as British Columbia. Figure 5 shows that the
relative agreement improved from 14 to 2.3 ppm (OSU914) to 4 to 0.3 ppm (UC93) for
baselines of 20 km to 400 km. The relative agrcement is between 10 and 15 c¢m for the UC93
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geoid, which correspond;
0.5 ppm for baselines of 100 to 2

over 1000 km.

s to about 4.1 to 1.3 ppm for short baselines of 20 to 100 km, 1.3 to
00 km, and 0.5 to 0.1 ppm or less for baselines of 200 to
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Figure 6 - Location of GPS stations in Quebec/Ontario (geoid contour interval: 1 m)

Table 5

Differences between GPS/leveling and gravimetric geoid undulations in Ontario/Quebec
after a datum fit, in meters (197 stations)

GEOID
MODEL MmN Max MEAN RMS 4]
OSU91A -0.59 0.54
UNB90 -0.31 0.36
GSD91 -0.26 0.24
UuCco2 -0.24 0.26
UCo3 -0.22 0.25

Using the GPS points on benchmarks shown in Figure 6, comparisons were also made in the
provinces of Quebec and Ontario. The comparison made on 197 yielded a difference of 10 cm
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RMS for the UC93 geoid (see Table 5). Note that due to the excellent data coverage, even the
OSU91A model alone performs well in this area. Figure 7 shows the results of the relative
undulation accuracy. As shown in this figure, the relative agreement is between 6 and 14 cm
for the UC93 geoid, which is equivalent to about 3 to 1 ppm for short baselines of 20 to 100
km, 1 g)o 0.7 ppm for baselines of 100 to 200 km, and 0.7 to 0.1 ppm for baselines of 200 to
over 1000 km.

0.6
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Figure 7 - Relative undulation accuracy in Ontario/Quebec (197 stations)

In relatively flat areas such as Ontario/Quebec, the GSD91 geoid which was computed by
planar FFT without zero padding was almost at the same level of agreement with GPS/leveling
data as the UC93 geoid which was evaluated by the discrete spherical Stokes integral. But in
the mountainous areas of British Columbia, UC93 outperformed GSD91. In Ontario/Quebec,
UNB90 was almost at the same level of accuracy as other geoid files. But in all the other GPS
petworks, UNB90 was poorer than other geoid models. In southern Alberta, the results from
UNB90 were even poorer than those of OSU91A. A possible reason for the poorer
performance of UNB90 might be that the geoid was obtained through integration, point by
point, using data in a spherical cap of certain limited radius around each computation point
while the FFT-based techniques made use of all the data on the grid simultaneously. Another
one might be the improper modeling of the topography. As it can be seen from the maximum
and minimum values in Tables 4 and 5, large differences exist among the various geoid
models. And from Figures 5 and 7 it can be seen that long-wavelength errors are present in the
OSU9IA solution, illustrating the need for improvement of the low degree and order
geopotential coefficients.

6. CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the theoretical developments and the numerical results in this
research are as follows. (i) For the FFT-based methods to give results identical to those from
numerical integration, zero-padding should always be used and the analytically defined kernel
spectra should be avoided. (i) For absolute geoid determination, the original rigorous spherical
kernel function should be used instead of the approximated ones and the evaluation should be
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done by the exact 1D-FFT method. In Canada, the use of the approximated kernel functions
introduced additional geoid errors with a standard deviation of 25 cm and a maximum value of
about 190 cm. (iii) It is possible to determine relative gravimetric geoid undulations in

mountainous areas with an accuracy below 10 cm (10) with respect to GPS/leveling. After
removing the systematic biases and tilts, the root-mean-square discrepancies between the two
geoid representations on 280 benchmarks in British Columbia, which is a typical mountainous
region, was about 23 cm, and on 209 benchmarks in Alberta, which is a typical flat and well
surveyed region, was about 4 cm. The relative agreement was 1 to 2.5 ppm in British
Columbia and is 0.3 to 1.4 ppm in Alberta for distances of 30 to 200 km.

For further improvements in accuracy, the following recommendations are made based on
results obtained by Li (1993), Wang (1993) and Li and Sideris (1994). (i) For applications
where only a GM will be used for geoid computations, this GM should be improved by
tailoring it using local or regional gravity anomalies. Accuracy improvements of the order of
50% have been observed. (i) With 2 given geopotential model and known variances of its
coefficients, the contribution of the model can be improved by more than 10 percent when the
coefficients are weighted by factors dependent on the signal-to-noise ratio. (iii) The errors of
the gravity observations should be filtered out by a Wiener-type optimal filter. (iv) The
predicted geoid errors should be estimated by error propagation because they can give valuable
information about the weak areas in terms of insufficient data accuracy and coverage (Sideris,
1995b). (v) To achieve a gravimetric geoid in mountainous areas with a relative accuracy of
0.4 to 1.3 ppm for distances of 20 to 100 km, the high frequency information should be
carefully considered. This can be achieved by significantly improving both the gravity
anomalies and the digital topographic heights in terms of data coverage, density, and
precision. (vi) To provide a reasonable external standard for evaluating the accuracy of
gravimetric geoid undulations, it is necessary to investigate the quality (accuracy) of the geoid
undulations derived by GPS/leveling. This is more important in mountainous areas, because it
is usually believed that the accuracy of the orthometric heights is much poorer in these areas
(Schwarz and Sideris, 1993; Sideris, 1994a).

The memory requirements, data handling and efficiency of the FFT methods can be further
improve by a combination of the following factors. (i) Performing 2D Fourier transformations
by applying the 1D FFT algorithm for each direction. (ii) Using the properties of the FFT that
allow the use of two real functions as the real and imaginary part of a complex function. This
allows for the transformations of two real functions or the convolution of two real functions
with the same kerne! function simultaneously. (iii) Using the fast Hartley transform instead of
the FFT; the memory and time requirements are reduced by up to a factor of two (Li and
Sideris, 1992 and 1995). (iv) Applying system input-output relations for handling
heterogeneous, noisy data as input (Sideris, 1994b and 1995b). (v) Developing hybrid spectral
megthods that produce gridded undulations from irregular gravity anomalies as input (Sideris,
1995a).
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ABSTRACT

South American Gravity Project (SAGP), a project undertaken and
coordinated by the Geophysical Exploration Technology (GETECH) - University of
Leeds, has been responsible for the collection and compilation of gravity data as well
as topographic data in South and Central America. The project compiled 2,297,373
gravity points on land, marine and airborne. All gravity values have been adjusted to
IGSN71 by using " Latin American Gravity Standardization Net 1977" (SILAG 77)
and "Rede Gravimétrica Fundamental Brasileira” established by Observatorio
Nacional in Brazil The anomalies are referred to WGS-84. The data were acquired
from the Iniernational Gravity Bureau (BGI), Toulouse, France, from Defense
Mapping Agency, Saint Louis, from oil companies and many national academic and
pon-academic organizations in different countries. Topographic and bathymetric data
were used to generate a topographic model in a 3' grid and from that a terrain
correction grid of 5' has also been derived. Nevertheless, several data gaps still exist
and new measurements are needed to accomplish a homogeneous coverage. In Brazil
a specific project called Anglo-Brazilian Gravity Project (ABGP) has been designed
to infill some of these gaps in the north and west parts of the country. A new effort is
now being undertaken by Escola Politécnica - University of Sdo Paulo (EPUSP) and
GETECH to estimate mean gravity anomaly values and to use them for geoid
computations in South America. This paper is intended to describe the processing
carried out with all the available informations from SAGP and ABGP in order to
derive the best Helmert mean gravity anomaly value of 30' x 30'. A resume of the
main theoretical topics related to the geoid determination will be summarized. A
geoid model for South America will be presented.
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1. INTRODUCTION

Geophysical Exploration Technology (GETECH) - University of Leeds has been
involved in the compilation of gravity and geomagnetic data from many different parts of
the world smce 1986. One of its projects was the South American Gravity Project (SAGP)
which collected gravity data for South and Central America and its margins delimited by
the latitudes of 60° S and 25° N and longitudes 25° W and 100° W. Topographic and
bathymetric data have been collected in the same area and a digital terrain model
generated. Nevertheless, several data gaps still exist and new measurements are needed to
accomplish a homogeneous coverage. In Brazil a specific project called Anglo-Brazilian
Gravity Project (ABGP) has been designed to infill some of these gaps in the north and
west parts of the country. In the first three years of the ABGP (1991-1994) several
thousands of new gravity stations have already been established. ABGP has been benefited
from an agreement between Fundagio Imstituto Brasileiro de Geografia e Estatistica
(IBGE - DEGED) and EPUSP, but also had collaborations from other organizations like
Observatorio Nacional (ON) [SOUSA, et al., 1993}, [ESCOBAR, 1993] and Companhia
de Pesquisas de Recursos Mincrais (CPRM). Data have been delivered to the project by
these organizations as well as by IAG-USP [SHUKOWSKY et al., 1991]

Taking advantage of the SAGP and ABGP gravity data base, a new effort is now
being undertaken by GETECH and Escola Politécnica - University of Sdo Paulo
(EPUSP), through the EPUSP and GETECH agreement, to estimate mean gravity
anomalies in block sizes of 30' x 30', from 5' initial values. The 30' mean values have been
used to construct a geoid model for South America, presented in this paper. It is expected
that the data be used also for local geoid model in different countries. These activities are
related to the Sub-Commission for the Geoid in South America (SCGSA).

2, THE SPECTRAL COMPONENTS

The determination of geopotential models and their improvements in the last
few years are responsible for the decomposition of the elements of the anomalous
potential, in particular the geoidal height, in two different spectral components: one of
long wavelength and another of short wavelength. The first one is derived directly
from the model The second is computed using a convenient modification of the
Stokes integral. When least squares collocation is used the geopotential model is
important to eliminate the systematic part which allows to consider the short
wavelength component as a random variable. Recently, the facilities to obtain digjtal
terrain models (DTM) in a grid and in this way to use interpolation procedures, can
be a good reason to use FFT technique [SCHWARZ et al., 1990].

3. THE MODIFIED STOKES INTEGRAL

The geoid height expressed in terms of a series of spherical harmonic
functions can be split out in the following form according to: [BLITZKOW, 19861
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or briefly:
N(O,A) = N; (8,4) + 8Ny (8,A) (2)

which means to separate the geoidal height in two different spectral components, one
of long wavelength and another of short wavelength. The first component Nj is
obtained easily from a geopotential model If gravity data is available in the region
around the computation point the second component can be estimated using a
convenient modification of the Stokes integral. Without details which can be found n

[BLITZKOW et al,, 1991] the mathematical expressions are:

SNOM =] 875, ST (wisenyeyede @
where:
! n
SAg["_"Ag_ Z Z(Cnm ng+Dan;m) (4)
n=0 m=0

which means to subtract the long wavelength component from the observed gravity
anomaly, and

S8 ()= 881 (¥)— S w) (5)
with
3S)(v)=S(yv)-Si(v) (6)
{
Siw=3 2 pw) @)
n=2 n—1
—_ I »;
5S5in=2 2L Pioosv) ®)

for the determination of t; coefficients see [VANiCEK et al., 1987] and [BLITZKOW
et al, 1991].

4. GETECH DATA BASE

At the end of SAGP 2,297,373 land, marine and airborne gravity points were
collected in South and Central America [GREEN & FAIRHEAD, 1991]. All gravity
values have been adjusted to IGSN71 by using " Latin American Gravity Standardization
Net 1977" (SILAG 77) and "Rede Gravimétrica Fundamental Brasileira" established by
Observatorio Nacional in Brazil [ FAIRHEAD et al., 1991]. The data have been acquired
from the International Gravity Bureau (BGI), Toulouse, France, from Defense Mapping
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Agency, Saint Louis, USA, from oil companies and many national academic and non-
academic organizations in different couniries. The final gravity distribution is shown in
figure 1. The analysis carried out on the gravity data to check against inconsistencies and
different origins are explained in [GREEN & FAIRHEAD, 1991].

Besides the gravity stations, a 3' x 3' grid of topography and bathymetry was
produced in order that terrain corrections could be applied. Four types of elevation data
have been used to construct the grid:

1. Worldwide topographic grid (ETOPOS).
2. Values picked from topographic maps.
3. Heights at gravity stations.

4. Shoreline Jocation.

A detailed description of these sources and the way they have been used can be found in
[GREEN & FAIRHEAD, 1991] .

The DTM of South America is in a process of improvement at this moment with
topographic maps being digitized, so that a new model will be available very soon.

Tn order to partiaily fill the gaps a special project has been designed for Brazil, the
Anglo-Brazilian Gravity Project (ABGP). The activities have been undertaken through the
agreement between Escola Politécnica - Universidade de Sdo Paulo (EPUSP-PTR) and
University of Leeds’GETECH. The field work activities benefited from the agrement
between EPUSP and (IBGE) who accomplished the field measurements. The present
gravity distribution in Brazil is shown in figure 2. A total of approximately 10 000 points
bave been added to SAGP coming from ABGP and from other organizations mentioned in
the introduction.

5. DATA PROCESSING
5.1 SAGP PROCESSING
After the validation process was completed at the time of SAGP, terrain

correction, Free Air and Bouguer anomalies were computed. The derived gravity
anomalies are referred to WGS-84 through the theoretical formula:

. 2 '
(1+0.00193185138639sin” ¢ mGal

¥4 = 978032.67714
J1-0.006694379990135in* ¢

(9

The Free Air correction has been applied using the following empirical equation:

FAC = 0.3083293357 +0.,0004397732 cos? #)h +7.2125x 1072 42 (10)
which is a function of the latitude ¢ and the orthometric height h.
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The sea bottom points have been treated according to the following expression: [
BGI, 1991]

FAC = (2k g, —T) DymGal ' a1
where D is the depth of water, p;,=1027 kg x m3, T = 0.3086 mGal/m, k = 2nG with G

the gravitational constant. For the Bouguer correction an infinite slab expression has been
used with a density of 2.67 g/cc for land stations and 1.17 g/ce for marine points. A
curvature correction has also been applied. For a detailed description refer to [GREEN &
FAIRHEAD, 1991].

Terrain corrections were calculated for all land and marine gravity points in South
America taking into consideration only the " outer zone * (from 5 km to 166.7 km). To
estimate this correction the 3' digijtal terrain model described before has been used. For

more details about the terrain correction and informations on the range of this correction
in particular in the Andes, refer again to [ GREEN & FAIRHEAD, 1991 ].

Because the expression (9) includes the mass of the atmosphere, a correction has
been applied to the observed gravity vahies to be consistent according to the followmng
equation:

5g,= 0.87¢~0116xH mGal (12)

where H is the elevation in kilometers.
5.2 PRESENT PROCESSING

The onshore data base available at GETECH (which includes coordinates, heights
and anomalies computed according to the aforementioned description, and a source code)
have been sorted in longjtude by blocks of 1° x 1° and sorted in latitude in each block. The
arithmetic mean has been used to estimate a mean anomaly for each block of 5' x 5'if at
least two points existed in the cell. When a mean value was computed, the coordinates of
the centre of the block was derived as a position for the mean. If just one point was
available in one 5' block, the anomaly valie with the existing coordinates were maintained.
As a result the final file with mean values of 5' x 5' grid is not in a complete regular grid,
but some coordinates are shifted from the centre. The SAGP data file does not include any
information on the accuracy of the different values available in the record for each station.
So, an estimation of accuracy of the mean gravity value has been computed using the
following slightly modified version of the empirical formula presented in [KIM and RAPP,
1990]: A , |

9= MAX{2, INT(20 / /n +0.05+|Ag| +0.5)} (13)

which is a function of the number of points 'n’ and the module of the gravity anomaly Ag,
between other constants.

Once the mean value was estimated the difference between the mean and individual
values has been calculated and recorded in a specific file if the absolute value exceeds
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200% of the mean. This procedure has been used to look for any big error still present in
the origial file of gravity anomalies. Despite carrying out a careful validation process in
SAGP, a few new errors have been found and corrected. Cells of 1° x 1° with suspected
problems has been analysed using NDVS (New Data Validation Software) developed at
GETECH. Tt provides with facilities to look for the anomalies in a 3-D and in this way find
out some inconsistencies.

After completing the estimation of mean values an interpolation process was
carried out: the objective being to estimate a value for as many empty blocks of 5' as
possible by taking advantage of the existing values around them. Therefore a mean value
has been assigned to every empty block when at least three values were available either to
the north, south, east or west of the empty cell. In this process an arithmetic mean has
been used again. Figure 3 shows the final distribution of 5' mean values.

In a further step, the 3' topographic grid mentioned above has been used to
estimate mean heights for blocks of 5' x 5'. As the data are in a 3' grid, for each cell a total
of 2 x 2 values occur considering the borders. The fact that the values of the borders are
used for two different cells creates some correlation that has not been taken into account
in the mean estimation at this time. The mean heights can be used to restore the mean Free
Air anomaly in the blocks of 30" x 30",

Finally a similar processing has been carried out to estimate mean terrain
correction from the 5' terrain correction grid.

6. RESULTS AND CONCLUSION

A complete file has been created with different 5' mean values: free air
anomaly, Bouguer anomaly, height and terrain correction. From this file, mean values
of 30' x 30' have been derived. In this case it has been derived a mean Faye anomaly in
the following way: the mean free air anomaly has been restored from mean Bouguer
anomaly and mean height. Due to the smoothness of the Bouguer anomaly it is very
well known that the mean value of this anomaly is more representative than the two
other quantities, in particular when the distribution of the point values in the cell is
poor. Finally the mean terrain correction has been added. The Faye anomaly is a good
approximation to the Helmert second condensation method [BLITZKOW et al,
1994]

Off-shore it has been used gravity anomalies derived from altimetry data.

In order to use these data for South America geoid calculations a validation
experiment has been done in Brazil. A total of 398 Doppler and GPS points on the
levelling network have been used to derive the satellite geoidal height Ng. The
cartesian coordinates related to WGS-84 have been referred to ITRF90 using the
following transformation parameters: [McCARTHY, 1992; p.18]

T, =-0.060 m o =+0.01830"
T,= 0.517m oy = -0.0003 "
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T3= 0223 m o3 = -0.0070 "
K=10.011 PPM

The idea is to have a geoid referred to a geocentric/ITRF90 oriented ellipsoid defined
by:

a=6,378,137m
e2 = 0.00669437999

In order that a gravimetric geoid (derived from gravity data and/or geopotential
model) be referred to WGS-84 ellipsoid it is mecessary to estimate a zero order
undulation N,, due to the fact that the best fit ellipsoid to the geoid is not (or may not
be) the WGS-84 ellipsoid. To do that the satellite undulations have been compared in
a first step with JGM2, up to n-= 36. The term N, is computed according to:
[BLITZKOW & SA, 1983]

i(NSi - NGi)

N, =—= (14)
n

The result of the comparison has been N = -1.21m and a RMS difference of 2.30m.
Using the model up = 72 the result is N, =-1.40 m and the RMS difference 2.27 m.

The mean gravity anomalies, after remove the long wavelength component
according to (4), have been used in the modified Stokes integral (3). As a reference
field it has been used JGM2 geopotential model up to n = 36. Finally the spheroidal
undulation derived from the same model has been added. This is the "remove-restore”
technique. A new comparison has been done with the satellite undulations. The
differences are shown in the figure 4. The new zero order undulation estimated is N
— _1.49 m The RMS difference is 2.39 m. This compairison showed two basic
systematic effects: the first in 32 GPS points in the central part of Brazil; the second
in all points in central-north Amazonas basin. Further analysis are necessary to be
carried out with respect to these problems.

Using both the satellite and gravity derived undulations the geoid (quasi-
geoid) map (Fig. 5) for South America has been computed and presented. The
satellite undulations are referred to WGS-84/ITRF90 according to the transformation
parameters mentioned before. To the gravity/GEMT2 undulations the zero order term
of -1.40 m has been added.

It is difficult to estimate the error of the geoidal heights now presented. It
depends on many different conditions: quality and distribution of the gravity data,
quality and distribution of the Doppler and GPS points, the accuracy of the leveling
network, and, in particular, the consistency of the digital terrain model. In this
respect, the DTM is in a major process of improvement at this time, as mentioned
before. It is a expected an improvement in the restored mean free air anomaly and
consequently in the geoid compilation after the new DTM be available. The RMS
difference obtained from the comparison of satellite and gravimetric undulations is
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certainly a good measure. Actually the relative error should be better. It is expected a
relative error better than 1 cmvkm.
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Accuracy Evaluation Of The Height Anomaly Prediction
by Means of Gravity Data in a Height Anomaly Control Network

Junyong Chen
National Bureau of Surveying and Mapping
Beijing 100830,China

Abstract

In a height anomaly control network, such as astronomic (or astro-gravimetric) levelling
network or GPS-levelling network, height anomalies at interpolation points are predicted
usually using remove-restore technique on the basis of known height anomalies at the control
points and the gravity data. This paper discusses the relationship among accuracy of the
predicted height anomalies and the resolution as well as accuracy of height anomaly control
network and those of gravity data. Results of a case study and its test computation in
connection with practical circumstance of China are given.

1. The Height Anomaly Prediction In A Height Anomaly Control Network

The local quasi-geoid in China obtained by means of technique such as astronomic
levelling, astro-gravimetric levelling and GPS-levelling (Torge et al 1989)(Tscherning C.C.
1992)(Chen 1.Y.1993) is essentially a griddid control frame of height anomalies,s0 we can
also call it as a height anomaly control network, HACN for short. It is constituted by a large
number of control points of height anomalies determined by these techniques. The resolution
and the accuracy of HACN therein can be defined after the completion of HACN. What we
often require to know are the predicted values and its accuracy at the non-control points or
so-cailed interpolation points in HACN. It goes without saying that these predicted values and
their accuracy are closely related to the prediction techniques and the data used. Sometime
in a relatively small area with less complex topography and gravity variation, it is feasible
to make prediction by way of approximation based on pure mathematics without using any
gravity data. However,this paper deals with problems which arise when the prediction is
made by means of gravity data (including topographic data,(Sideris M.G.1985)), as it is
generally applicable. Then not only do the resolution and accuracy of HACN which provides
initial data and plays the major role, but also it is necessary to take into account the
resolution and accuracy of the parameters of gravity field adopted in prediction.

Theoretically, in the prediction of height anomaly at interpolation points, it is not absolutely
necessary to take the existing HACN into account, which can be computed directly by using
gravity data with Stokes formula, Molodensky formula (Molodensky M.C.1960), Meissl
formula (Meissl P.1971), and FFT (Schwarz K.P.et al 1990) technique. However,considering
the problems concerning the global distribution, accuracy and resolution of measured gravity
data, the ability of gravity field model in representing short wavelength, and different
reference system used in different countries, the method currently widely used practically in
predicting height anomalies at interpolation points in a local extent is the remove-restore
technique. Generally it consists in taking known height anomalies at some control points (of
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HACN) located in the vicinity of interpolation points as initial data to provide restrain for
prediction, then in combination with global gravity model and surface gravity data to obtain
the predicted height anomalies at interpolation points. The above computation procedure in
general case is briefly described as following:

1. Within a grid of a HACN, wherein the interpolation points are located; select the known
height anomaly values ¢° at several control points around the interpolation point as initial
data; compute the corresponding height anomalies ¢° at these control points from global
gravity field model, remove c®, from ¢° ; i.e. remove the influence of long wavelength
component of geoid.

2. Compute the height anomalies ¢° at these control points using the surface gravity data
within a spherical cap of definite radius o and with cerin formula; substract values ¢°, from
(¢°-¢°,), i.e. further remove from ¢ the influence of medium wavelength and partly short
wavelength components of geoid.

3. Finally residuals ¢°, are taken as initial values for the prediction of the height anomalies
at interpolation points. : :

gor = Co - Cos - gog (1)

For the linear parts of the height anomalies at those interpolation points, their predicted
values, ¢, , are obtained with certain prediction technique based on the initial values ¢°.

4. The height anomalies ¢ at interpolation points are obtained in succession by restoring,
i.e. reversing the above process.

¢=¢ +¢ tg 2)

II. Accuracy Evaluation For The Height Anomaly Prediction

There exist three main error resoures in the prediction of point height anomalies by means
of remove-restore technique. The first lies in the error of initial data of prediction, it arises
from the error m, in the height anomalies ¢° at control points in HACN.

The second originated from error m, which occurs in the computation of ¢, using global
gravity field model. Different gravity field models used in the prediction of height anomalies
bring about respectively systematic and accidental errors. A comparison of (1) and (2) shows
that substraction is followed by addition in the remove-restore technique,the prediction of
interpolation points is governed by control points in a gridded HACN:; moreover, the control
and interpolation points are not far apart; therefore, the systematic error of gravity field model
is essentially compensed in the predicted results of interpolation points during the remove-
restore process. The finer is the grid of HACN, i.e. the higher is the resolution of initial
data, the more thoroughly is the systematic error compensated.

So far as the accidental error of gravity field model is concernd, for grids in different
regions the model covers, it exhibits stochastic character; however,in a local extent of a
single grid, it often demonstrates systematic character; thus it follows that in case of
predicting height anomalies at interpolation points in a small extent of a grid, this accidental
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error can also be weakened partly due to the reverse process in the remove-restore technique.

For this reason, to evaluate m, with degree variance or absolute error of a global gravity field

model will tend to be exaggerated. Test computation shows that m, can be expressed by an.
expirical value which is actually the residual error of global gravity field model in a small

region surrounded with control data. Test computation also shows the value of this residual
error is quite stable within the area with certain resolution and accuracy of measured surface

gravity data. .

The third error source is the error m, which occurs in the computation of ¢, with surface
gravity data around the interpolation points. This mainty reflects the residual influence after
the compensation of the short wave-length disturbances of the local gravity fields around
control and interpolation points. Hence the total error m, in the predicted height anomaly ¢
at interpolation points, in taking account of (2), can be expressed as:

mg:-_";\/11102+m52-{—rng2 3

It is well-known that geoid undulation is identical to the variation in the direction of the
vertical. Thus in the accuracy evaluation of the height anomalies at interpolation points,
consideration can be made in such a way that in a local extent of a grid in HACN, the height
anomalies at interpolation points within this grid are predicted by taking the height anomalies
at control points as initial data, this is essentially to predict the differences of height
anomalies between control and interpolation points, i.e. to predict the direction (relative)
variation of deflection of the verticals at these two kinds of points. With regard to the height
anomaly at interpolation point,m, is the error of initial data, this error is essentially, on an
average, a fixed part in the error of the predicted height anomaly at interpolation points. This
argument is fully applicable to the corresponding prediction error of deflection of the
verticals.

As for m,, as it is caused by the error of a used global gravity field model, and is partly
compensated in the process of "remove” for control points and "restore” for interpolation
points. In a local extent, the degree of the compensation within each grid is compatible also
in an average meaning. Therefore for a given gravity field model, if long wavelength in a
local extent is concerned, m, can be regarded as a "linear interpolation error” when
deflection of the vertical at interpolation point is obtained by linear approximation between
the deflections of the vertical at comtrol points, i.e. the computation of ¢, can be considered
as a linear approximation of the height anomaly at interpolation points by using gravity field
model; this error basically is a stable value.

While the process of applying corrections to (¢, + ¢.) by using the local gravity data
around control and interpolation points (corresponding to computing ¢,) practically amounis
to further taking into account the influence of short wavelength components of local gravity
field on the deflection of the vertical. This can be considered as the nonlinear part 46 of the
variation between deflections of the vertical at control points, or it comes to the same thing
0 consider g, as the correction term of the (local) gravity (field), its error is above
mentioned m,.

In a given HACN, or in drawing upon a plan for geoid determination, quantitative
requirments should be laid on the accuracies of the height anomalies at control and
interpolation points, for example, they are designated as m, for ¢” and m, for ¢ respectively.
Once the used gravity field model is given, the value of m, can be obtained from the
derivative of the differences between the known height anomaly at control points in HACN
and the corresponding value computed from the model. Therefore, in the given plan for
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geoid determination or in a HACN, once m, m, and m, are given, the limit value of m, can
be inferred previously according to (3).

The relations between the error m, of the gravity correction and the resolutions of a local
quasigeoid (or HACN), and also that of local gravity data is derived as following.

Assuming that the resolution of a local quasigeoid (or HACN) in the area where the
interpolation points lie being d(km)xd(km), mentioned already, the error of the gravity
correction applied to the height anomaly or to the deflection of the vertical at interpolation
point with respect to control point being m, and 06 respectively, if the interpolation point lies
in the center of grid, then, without losing generality, the relationship between the two, m,
and 6, can be expressed as

80" =v2p" m, /1000d 4)

Here the units of m, , d and 50 are m, km and arc second respectively.
According to Molodensky’s expirical formula(Molodensky M.C.1960) regarding error of
_ gridded mean gravity, 6g and that of deflection of the vertical 56, we have

06" = 0.15 &g )

Here the units of ég and 66 are mgal and arc second respectively. Hence, where the error
of gravity correction term,m, and the resolution of HACN are given, by introducing (5) into
(4), the accuracy requirement on gravity anomaly is

8g = 1945 m, /d (©)

Neglecting observation error, the relation between representative error of gridded mean
gravity anomaly, g and the side length L, characterizing the resolution of gridded mean
gravity anomaly,is (Molodensky M.C.1960)

8g = 2cvL (7

Here c is the coefficient of representative error; the units of L ang 6g are km and mgal
rspectively. By combining (6) and (7), the relation between the error of gravity correction
term m, which is applied to the predicted value of the height anomaly at interpolation point,
and the resolution of local gravity data (gridded mean gravity anomaly) as well as that of
geoid d is obtained.

In case of giving d and m,, it is possible to estimate the minimum resolution L for the local
gravity data should be hold, that is

L° = 8518 m,* /c? & (8)
Here the unit of L.° is degree and in middle area. In case of giving m, and L°, it is possible
to estimate the required resolution d of quasigeoid (or resolution of HACN), then d can be
rewritten from (8) as '

d = 92.29 m, /cvE® ©)

Here the symbols and units are the same as above.
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Of course,We can alternately estimate the obtained possibly accuracy m, of the gravity
correction term in regions with different topography, according to the existing resolutions d
and L°, the estimation formula reads

m, = 0.01084 cdVL® : (10)

III.The Conclusions From The Case Study

In the case study a 7°x 7° area (fig.1) with 12502 gravity points for test computation is
selected. There are several kinds of topography in the area such as plain,hilly and mountain
land. The resolutions of the local gravity data and DTM are 5’ 5° and 30" x 30"
respectively. The height anomalies at 26 astronomic stations in the area derived from 1st
order astro-gravimetric levelling in China are taken as known values, part of these
astronomic stations are taken as unknown test points during the interpolation. Height
anomalies at these test points are predicted using various test computation schemes. The
mean square root differences between the predicted values and corresponding known values
are used to evaluate the relative merits and demerits of the various schemes. Due to
numerous permutations and combinations in the comparison of various schemes as well as
the huge volume of computation, the limited space of this paper defies all attempts to list the
results of various test computations and their intermediate process, in what follows only a
brief description of the test computations in the case study and its main conclusions are given
as follows.

1. In the computation of long wavelength components ¢, of height anomaly, two kinds of
gravity field models, A and B, have been compared with each other. A are some popularly
used models in geodetic comunity but without the surface gravity information of China; B
is the model (Ning 1.S. 1990) which does contain the detail gravity information in China.
The resuits of computation(e.g. with Meissl formula) indicate when the radius o of spherical
cap in computing ¢, is larger than 2.5°-3°, the final results derived from B are ananlogous
to those from A, only in the area of China with dense gravity data, the obtained accuracy is
slightly better. This may ascribe to the fact that in computing ¢, using remove-restore
technique, only the information of low degree (long wavelength) component of gravity field
plays a major role, and the low degree coefficients of various models recently used are only
slightly different.

As for the number of the degree of gravity field model adopted in the computation of ¢,,
the results obtained by extenting to 36 and 180 degrees respectively of the above mentioned
two kind models have been compared, herefrom we come to the conclusion that for a same
gravity field model, the results (accuracy of ¢,) obtained by extending to high degree (e.g.
180 degree) is only slightly superior to that obtained from low degree. For example, the
results obtained by extending B model to 180 is only 5-10% better than that obatained from
low degree on an average. On the basis of the derivative of the differences between the
known height anomaly at control points in HACN and the corresponding value computed
from the model, in case of the radius of spheric cap ¢=3°, using Bouguer anomaly, when
B model is extended to 180 degree, the corresponding m, can be taken as +0.10m;
accordingly, when A models is taken to 36 degree, m, can be taken as +0.15m.

2. In practice, ¢, and ¢, are computed simultaneously. Among various computation
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methods, Meissl’s method and FFT technique give slightly better results. However, when
data processing is made by FFT technique, it requires that both the resolutions of local
quasigeoid and that of local gravity field should be the same and higher. Test computation
shows that in order to make the result from FFT practically valuable, the resolution should
be higher than 30° X 30’ at least. It is naturally possible to attain higher resolution and keep
it identical for the two by way of prediction. Generally, the test result obtained from high
resolution is better on an average than that from low one, whether the high one is obtained
from actual measured or prediction. However in case of lacking sufficient measured gravity
data in a complex topography area, and high resolution is obtained solely depending on
prediction, then in such area the test computation reveals that the probability of occurrence
of the error in predicted values at a few points, which are 3-4 times as large as normal error,
is rather higher.

When ¢, and ¢, are computed using Meissl formula,the resolution of local quasigeoid and
that of local gravity field are not necessary the same.

Besides, whether FFT technique or Meissl formula used, it is sufficient to take into account
the zero order term of the formula, the gain obtained from including the first order term is
rather small, only 2-3% increase in accuracy can be achieved according to the test
computation, hence the need for including the first order term can be obviated.

3. Three types of gravity anomaly can be adopted in computing ¢,: Bouguer anomaly,
Bouguer-topographic anomaly and Bouguer-topographic-isostatic anomaly, when the last one
is used in the test computation, if the coefficients of gravity field model are extended to 36
and 180, only about 2% and 10%, on an average, amelioration in accuracy can be achieved
respectively than other two types are adopted, moreover, there are lacking both in regularity
and homogenerity. In view of the fact that better DTM and more computer time are needed
in computing topographic and isostatic correction applied to gravity, so if high degree
coefficients (e.g.180 degree) are included in computatng ¢, it is generally sufficient to use
Bouguer anomaly in deriving ¢, .

4. Various approximation methods,including collocation, can be used in predicting the short
wavelength components ¢, at interpolation point, however their obtained results is analogous.
When height anomaly prediction at a interpolation point is carried out in a single grid of
HACN where it lies, the prediction accuracy obeys on the whole regularities (8)-(10). If
simutaneous multi-points prediction is made by combing multiple grid wherein the
interpolation points lie, the mean prediction accuracy tends to be decreased to a great extent
according to the test computation. For example, when simultaneous multi-points prediction
is made by combing 88 grids, the error of predicted results is twice as large as that of single
grid prediction at least. Hence, as far as accuracy is concernd, the superiority of FFT
technique relative to Meissl formula is not very outstanding.

When the prediction of ¢, is made in a single grid of HACN, its initial data are ¢°, which
are obtained after removing the influence of long, medium and a part of short wavelength
components of gravity field from the height anomalies ¢° at control points, So ¢°, as initial
data basically bear a linear relationship with ¢, at interpolation points within a corresponding
grid, then the prediction of ¢, can be made by way of simple linear interpolation with
latitude, longitude and height as parameters, the effect is acceptable.

3. As for the value of ¢ in (7)-(10), based on the practical conditions of China, extensive
statistics has been made, and leading to the following values of ¢: 0.54 for plain; 0.81 for
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hilly land; 1.08 for mountain land and 1.50 for high mountain area.

IV. Test Computation For The Accuracy Evaluation Formulas

Test computation for the accuracy evaluation formulas given in section II is briefly
introduced here.

Assuming that resolutions of a HACN,d,in the east, middle and west of China are 70, 130
and 350 km respectively, and that the requirements on accuracies m, and m, at interpolation
and control points in the above three areas are +1.0m, +1.5m, +2.0m and +£0.9m, +1.2m,
+1.5m respectively(Chen J.Y.1993). Refering to m, = +0.15m mentioned above, then the
requirements on errors m, of gravity correction term applied to height anomalied in the three
areas are +0.39m, +0.88m and +1.3m respectively according to (3). Hence after knowing
m, and d, the requirement on resolution L°® of local gravity data can be obtained by (8)(ref.
Table I}. 1t should be noted here in the computationn of ¢, , the radius ¢ of spheric cap in
which the local gravity data is taken into account should not be smaller than 3°,

If an accuracy of the 1m order for the geoid of China reference to Xian geodetic datum is
required, the error m, of gravity correction term at interpolation point should not be in
general larger than £0.5m; it can be seen from Table 2, if a resolution of 30’ %30’ local
gravity data holds, this requirement can only be fulfilled when the resolution of HACN
approximately attains 75km on an average for whole China; while in mountain and high
mountain areas, this resolution should even increase to 50km at least, however, it is very
difficult to attain this resolution for a HACN in such kind areas. Otherwise, the resolution
of local gravity data should be enhanced in the area, for example, achieving 5’ X §°,

An alternative solution is to pose different requirements on the accuracy of error m, of
gravity correction term in different areas, or in other words, the local geoid will be with
different resolutions and different accuracies in different regions, so that the resolution of
local gravity data will match with that of geoid on a practically feasible basis, and the layout
of HACN for local geoid determination will conform to the need of a developing country like
China and is practically feasible.

Table 1. The requirement for the resolution of local gravity data L°, when the resolution of
HACN d, and the accuracy of the gravitry correction term m, are known.
(according to (8))

Region m, d L®
(m) (km) plain hilly land | mountain land | mountain area
East | £0.39| 70 |[355°%X35 | 25 %25 15" x15’ 10° X10°
{| Middle | + 0.83 | 130 1°x1° 35" x35° 15" %1%’ 10" x10°
lLWest + 1.30 | 350 | 2525 | 10°X10 5’ X5’ 5’ x5’

Here the last figure of L in Table I has been rounding to 0 or 5.
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Table 2. The requirement for the resolution of HACN d, when the accuracy of gravity
correction term m, and resolution of local gravity data L° are gwen
(according to (9)) : ‘

m, L’ d(km)

(m) plain | hilly land | mountain land | mountain land | average
1°x1° 170 115 35 60 © 110

1._.0 30°x30° | 240 160 120 90 150
5'X5 590 395 295 215 375
10x10 85 60 40 30 55

0.5 [ 30'x30° [ 120 80 60 45 75
5'x5’ 295 200 150 105 190

Here the last figure of d has been rounding to O or 5.
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LE GEOIDE GRAVIMETRIQUE EN BELGIQUE

Premiers résultats

THE BELGIAN GRAVIMETRIC GEOID

First Results

C. Poitevin', Z. Jiang2 & M. Everaerts'

! Centre de Geoph. Interne et de Géod. Spatiale, Observatoire Royal de Belgique, 3 Avenue Circulaire, B 1180 -Bruxelles
? LAREG, Institut Géographique National, 2 Avenue Pasteur, F 94160 - St-Mandé

Mots clés : Géoide, gravimétrie, Belgique, nivellement, GPS.

Key Words : Geoid, gravimetry, Belgium, levelling, GPS.

Résumé : Le géoide connait un regain d’intérét depuis I’avénement du positionnement
précis par satellite, en particulier pour réaliser du nivellement par GPS. Aprés un bref rappel
de notions élémentaires sur le géoide, nous expliquons comment s’est constituée la banque de
données gravimétriques belge et la fagon dont ces données ont été exploitées pour aboutir au
calcul d’'un premier géoide gravimétrique sur la Belgique. Ce geoide a été adapté a 32
hauteurs géoidales déduites d’observations GPS et de nivellement du nouveau réseau belge de
référence BEREF. L.’ adéquation des résultats se situe au niveau de = 5 cm en moyenne avec
des écarts atteignant au maximum * 12 cm dans les régions ou la densité¢ de mesures
gravimétriques fait manifestement défaut. De nouvelles solutions seront bientdt proposées qui
intégreront le maximum d’informations gravimétriques, topographiques et géodésiques
disponibles en vue d’obtenir une précision sub-centrimétrigue.

Abstract : The need of a precise geoid is growing with the increasing use of precise
satellite positioning particularly for GPS levelling. After a brief recall of elementary notions
about the geoid, we explain how the Belgian gravity data bank has been set up and how these
data have been exploited for the computation of the first gravimetric geoid over Belgium. The
geoid has been adapted to 32 geoidal heights deduced from GPS and levelling observations
on the new Belgian reference network BEREF. The adequacy of the results is about + 5 ¢cm in
the mean with variations reaching + 12 cm maximum in areas where gravity data are clearly
missing. New solutions will be proposed soon. These will include the maximum of
gravimetric, topographic and geodetic informations in order to reach sub-centimeter accuracy.
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1. Introduction

L’objet de notre propos est d’introduire ou de réhabiliter un concept qui faillit disparaitre ou
tout au moins étre délaissé par beaucoup avec 1’apparition de la géodésie tridimensionnelle :
le géoide. D’aucun s’ imaginait qu’il était possible de s”affranchir du champ de la pesanteur et
méme de Dellipsoide de référence (Levallois, 1969, pg. 60).

L’avénement de la géodésie spatiale, plus particuliérement la disponibilité de récepteurs GPS
(Global Positioning System) de plus en plus performants et les techniques de calcul de plus en
plus élaborées, démontrent le contraire.

Les satellites ont permis de faire un bond prodigieux dans la connaissance précise des
dimensions et de la forme de notre planéte. D’un autre c6té, nous disposons d’un patrimoine
assez impressionnant de mesures effectuées & la surface de la Terre dont dépendent une
grande partie de nos activités économiques et que nous devons continuer & exploiter. Ces
mesures se référent toutes 4 la verticale locale et donc implicitement au géoide. Les combiner
avec des mesures satellitaires, de caractére géométrique, se révéle souvent trés délicat mais
nécessaire car, hormis pour de petits réseaux locaux, les seules références pratiques
demeurent les systémes nationaux sur lesquels s’appuie la carte de base.

L’intervisibilité entre les stations de mesure n’est plus une contrainte avec les systémes
inertiels et GPS. Les distances s accroissent et le topographe entre dans le domaine de la
géodésie et plus particuliérement de la géodésie physique. Cette discipline trés captivante I’est
4 un point tel qu’elle est souvent négligée par le praticien dont les impératifs, trés
compréhensibles, sont de produire un résuitat dans un délai réduit, au risque d’une
dégradation de la précision de ses observations.

C’est ce a quoi nous désirons remédier en apportant notre contribution par le calcul du géoide
gravimétrique, une tiche qui n’est concevable qu’a I’échelle du pays vu la quantite, la
particularité des données a traiter et les techniques de calcul mises en oeuvre.

2. Le géoide

Nous n’entrerons pas ici dans toutes les subtilités de la géodésie physique avec des notions
telles que quasi-géoide, co-géoide ou tetluroide bien que nous les évoquerons. Le lecteur
intéressé trouvera ces détails et leur explication dans ‘Physical Geodesy’ de Heiskanen &
Moritz (1967), qui reste I’ouvrage de base en la matiére et auquel on fera référence dans la
suite par les initiales PG, ou dans Vanicek & Krakiwsky (1982) également tres didactique.
Pour une étude plus détaillée, on se reportera & (Moritz, 1980).

Une définition assez classique et intuitive du géoide est qu’il correspond a la surface de
niveau coincidant avec le niveau moyen des mers prolongée sous les continents par la
condition d'y rester normale a toutes les lignes de force (Levallois, 1969, pg. 21).

Malgré son apparente simplicité, cette définition suscite plusieurs interrogations comme, par
exemple, le niveau moyen des mers, sa permanence, les références altimétriques... Des
réponses nous viennent maintenant de 1’espace avec les données d’altimétrie par satellite
(Seasat, ERS1, Topex - Poséidon, etc.) mais le domaine d’exploration reste encore largement
ouvert.
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En fait, il est plus approprié de parler de hauteur géoidale N. Celle-ci est la différence entre la
hauteur ellipsoidale h, purement géométrique, c’est-a-dire la distance entre le repére aun sol et
I’ellipsoide de référence que 1’on s’est choisi ou qui est imposé, et 1a hauteur orthométrique H
telle qu’elle est obtenue par le nivellement et la gravimétrie au départ d’'un datum que I’on
s’est fixé. H représente une distance entre la surface topographique et ‘une’ surface
équipotentielle correspondant normalement au geoide. On écrit donc une équation tres
élémentaire dans sa forme, N = h - H (Fig. 1), mais dont la solution est difficile & obtenir car
on ne remplit pas toujours les conditions sur les paramétres pour appliquer rigoureusement
cette formule simple.

Topographie

altitude H
(nivellement)

hauteur
ellipsoidale h
(GPS)

hauteur
' géoidale N
(gravimétrie ou

g GPS-nivelé)

/ \Ellipsofd [ ]

h=H-+N

Géoide

Fig. 1 : Hauteur ellipsoidale, altitude et hauteur géoidale.

Il existe un moyen indépendant d’accéder 4 N via le potentiel gravitationnel perturbateur T, la
différence entre le potentiel de la Terre réelle et le potentiel de la pesanteur sur I’ellipsoide de
référence, par la formule de Bruns (PG, éq. 2-144)



ol v est la pesanteur normale, ¢’est-a-dire la valeur théorique de la pesanteur
calculée sur un ellipsoide de référence. La formule est donnée au § 5.1.2.

et ’équation fondamentale de la géodésie physique (PG, €q. 2-148)

0T 121 pgeo

6h vy oh

qui relie T 4 I’anomalie de pesanteur Ag définie plus précisément au § 4.3, une quantite
calculable au départ des observations gravimétriques, g étant la pesanteur mesurée et /
I"altitude. De longs développements mathématiques conduisent a la formule de Stokes (PG,
éq. 2-163b)

N=4—TE%J;IAgS(‘P) do

ou R =rayon terrestre moyen {voir PG, pg. 87) ~ 6.371 km,
G = valeur moyenne de la pesanteur terrestre ~ 978.8 Gals;
v = distance sphérique utilisée comme rayon d’intégration,;
S(y) = fonction de Stokes (une fonction assez complexe dont une des
expressions est donnée dans PG, €q. 2-164),

qui établit une relation directe entre N et Ag sous forme d’une intégration des anomalies de
pesanteur étendue 4 I’ensemble de la surface terrestre. Or, nous ne disposons pas de mesures
gravimétriques en tout point du globe.

En Belgique, nos prédécesseurs ont choisi comme ellipsoide de référence I’Ellipscide
International, appelé aussi Hayford 1924, qui n’est notamment pas une surface
équipotentielle, les formules de la géodésie physique ne s’y appliquent donc théoriquement
pas, les conditions requises sont énumérées dans (Levallois, 1970, pg. 147) et confirmées par
(PG, pg. 64). Le datum altimétrique (repére IGNMK) n’a plus réellement de connexion avec
le niveau moyen de la mer puisque choisi arbitrairement, pour des raisons entre autres de
préservation, dans la cour de I’Observatoire Royal (IGM, 1949). Sa référence est située
environ 2.32 m plus bas que les références des pays voisins. Stricfo senso, nous n’utilisons
pas de cotes orthométriques, ce qui n’a pas d’incidence vraiment préjudiciable compte tenu de
la topographie du pays. Le systéme de représentation plane Lambert sécante utilisé en
Belgique ne satisfait pas, 4 la précision requise, aux formules mathématiques de la théorie des
projections cartographiques (Poitevin, 1988) et le Lambert belge 72, suite aux adaptations
destinées 4 maintenir ses coordonnées proches du Lambert 50, nécessite une transformation
(translation et rotation) additionnelle...

Briévement, nous avons 4 résoudre chez nous ce 4 quoi sont également confrontés tous nos
voisins : ’homogénéisation de nos systémes de référence et la mise en concordance de nos
observations dans un systéme standardisé pour pouvoir exploiter au mieux les données
terrestres et satellitaires.
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Ce qui est rassurant est qu’en prenant un certain nombre de précautions auxquelles il est fait
allusion plus haut et en utilisant des données bien contrdlées et minutieusement validées, il est
possible d’obtenir des résultats déja trés satisfaisants dans un certain nombre d’applications a
condition de se tenir & des notions différentielles. 1l faut entendre, dans ce cas-Ci, que nous
pouvons, localement ou méme globalement, évaluer la forme du (quasi-)géoide gravimetrique
mais pas sa position absolue méme si des mesures absolues de la pesanteur précises 4 10” ont
contribué & sa détermination. Pour leur part, les observations GPS de précision sont effectuées
dans le mode différentiel et doivent subir certaines transformations avant de délivrer des
hauteurs ellipsoidales. De celles-ci on soustraira des altitudes rapportées au Deuxiéme
Nivellement Général (DNG) pour obtenir des hauteurs géoidales dites GPS-nivelées. Rien
qu’en se rappelant I’arbitraire de la définition du datum du DNG, le repére IGNMK, on
comprendra qu’un géoide construit sur des points GPS-nivelés n’a pas non plus de position
absolue bien établie. Par abus de langage, nous continuerons pourtant a appeler ces deux
surfaces, gravimétrique et GPS-nivelée, géoides. Chacune d’elles posséde des avantages et
des inconvénients. Plutdt que d’opposer la méthode gravimétrique 4 la méthode géomeétrique,
nous avons voulu voir dans quelle mesure les résultats qu’elles produisent se complétaient a
I’avantage de I’utilisateur.

3. La banque de données gravimétriques belge

La banque de données gravimétriques belge est établie au Centre de Géophysique Interne et
de Géodésie Spatiale attaché a I’Observatoire Royal de Belgique. Elle a été initiée en 1983
par une recherche systématique et un dépouillement méticuleux de toutes les archives encore
accessibles et utilisables. D’abord limitée i la Belgique, nous 1’avons progressivement, pour
rencontrer les besoins de la géodésie et de la géophysique (Chacksfield & al., 1993), étendue
aux régions limitrophes : Allemagne, Grand-Duché de Luxembourg (Poitevin & al.,1990),
France et Sud-Est de I’ Angleterre. Des données terrestres sur les Pays-Bas et des données
marines sur la Manche et la Mer du Nord sont en cours d’intégration. Nous comptons, si
possible, combiner ces derniéres avec les données d’altimétrie par satellite (ERS1, Topex -
Poséidon et Seasat) dont nous disposons déja. En Belgique, de récentes campagnes
gravimétriques ont été organisées par nos soins pour satisfaire les demandes des géologues, ce
qui nous a permis d’établir 4.150 nouvelles stations de trés haute précision sur 4.150 km? du
territoire national.

La validation est une procédure extrémement stricte qui garantit la qualité et |'intégrité de la
banque de données gravimétriques belge. Elle est appliquée systématiquement, avant
intégration dans la banque, & tout ensemble de données, qu’il provienne de sources
extérieures ou de nos propres mesures effectuées sur le terrain. La validation est toujours
accompagnée de !’homogénéisation des réseaux dans les mémes datums plani-, alti- et
gravimétrique, ce que I’on contrdle sur leurs intersections lorsqu’elles existent.

Actuellement, plus de 120.000 valeurs ont été incorporées définitivement dans la banque de
données (Fig. 2). Le taux de rejet a la validation a ét¢ de 11,1 %, ce qui n’est pas trop élevé
pour des données d’origines aussi diverses. On constatera, malheureusement, de graves
lacunes dans la couverture gravimétrique du pays qu’il conviendrait de combler aussi bien
pour satisfaire les besoins de la géodésie que ceux de la géophysique et de la géologie.
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4. Principe de calcul du géoide gravimétrique

Comme dit précédemment (§ 2.), il faudrait théoriquement connaitre la valeur de la pesanteur
en chaque point du globe pour procéder & I’intégration des anomalies par la formule de
Stokes. Ceci est bien siir illusoire car il n’existe que trés peu de mesures gravimétriques sur
les océans et les mesures effectuées sur les continents sont beaucoup plus denses mais parfois
aussi trés éparses. De toute fagon, les moyens de calcul ne le permettraient pas et le gain en
précision ne le justifierait pas. Pour remédier & la situation, on pratique alors de la maniére
décrite ci-aprés qui se base sur la décomposition du contenu spectral du champ gravitationnel
en trois gammes de longueurs d’onde.

4. 1 Les modéles géopotentiels

Grice aux satellites artificiels, par ’étude des perturbations de leur orbite sous I'influence de
I’attraction terrestre, on a pu établir des modéles géopotentiels représentatifs du potentiel
gravitationnel de la Terre. Ces modeles se présentent sous la forme de développements en
harmoniques sphériques, une classe particuliére de polynomes qui permettent de modéliser au
mieux la forme de notre planéte. La circonférence terrestre divisée par le degré du
développement donne approximativement la longueur d’onde de résolution d’un modele
géopotentiel, en bref, d’un potentiel. Il en existe en effet plusieurs, suivant ’usage auquel on
les destine. C’est ainsi que, pour augmenter la résolution des potentiels utilisés en gravimétrie
notamment, on combine, au cours de leur détermination, les données spatiales avec des
anomalies gravimétriques moyennes et d’autres informations géophysiques. Le calcul d’un
potentiel est une entreprise de grande envergure, tant sur le plan de la collecte des données
que des movens de calcul mis en oeuvre, mais il permet de condenser en deux ensembles de
coefficients, C,,, Spm, Un volume de données extrémement important qu’on ne pourrait
manier autrement. Les modéles géopotentiels, dans les limites de leur résolution et de leur
précision propre, ont également 1’avantage d’étre globaux et de permettre de calculer, en
n’importe quel point du globe, la valeur du potentiel gravitationnel et de ses quantités
dérivées : hauteur géoidale, anomalie de la pesanteur et déviations de la verticale. C’est ainst
qu’une premiére ébauche du géoide sur la Belgique avec le potentiel GEMI0C a été calculée
(Poitevin, 1989, 1991). Ce potentiel étant complet jusqu’'au degré et & l'ordre 180, sa
résolution n’était que de 220 km mais suffisante pour donner une premiére idée de I’allure du
géoide sur le pays. Pour arriver a ce résultat, il a fallu, pour chaque point de calcul,
synthétiser les 2 x 16.471 coefficients, Cyp, S, dans le développement du potentiel en
harmoniques sphériques. Actuellement, les potentiels gravimétriques atteignent en standard le
degré 360, soit 2 x 65.338 coefficients et une longueur d’onde d’environ 110 km. C’est le cas
du potentiel OSU91A (Rapp & al., 1991) que nous avons utilisé pour ce travail.

4.2 Les modéles numériques de terrain

La haute fréquence s’obtient & partir d’un Modéle Numérique de Terrain (MNT) dont la
finesse du pas influencera la précision des calculs. En fonction de la disponibilité et des
variations de la topographie, on choisira un pas de 5 & 1 km, voire mieux, et un débordement
du MNT par rapport aux données gravimétriques d’au minimum une demi-longueur d’onde
caractéristique du potentiel, soit ici 55 km. On calcule ensuite un MNT filtré en supprimant
toutes les longueurs d’onde plus courtes que 55 km. Celui-ci représente la surface
topographique de référence qui devrait correspondre au potentiel de degré 360. En
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soustrayant le MNT filtré du MNT originel, on obtient le Modele Résiduel de Terrain (MRT)
qui sera utilisé pour calculer I'effet de la topographie. Numériquement, cette opération est
réalisée en une étape.

4.3 Les anomalies gravimétriques

Le calcul des anomalies gravimétriques dites ‘a I’air libre’, Ag,; (PG, éq. 3-62 et 3-16, 3-17)

Agy =gtF-v
. og oy
F=—--Lha—-——h~+03086Ah
ou 3k 3k mGal

s’effectue en utilisant les valeurs de la pesanteur mesurées et, théoriquement, les altitudes
normales (PG, €q. 4-44).

2
=< 1+(1+f+m—2fsin2(b)£+[£]
Y ay ay

oi  f=(ab)/a est!’aplatissement géometrique;
a et b sont respectivement les grand et petit axes de I’ ellipsoide;
m= @%b / kM,

@ = vitesse angulaire de rotation de la Terre;
M = masse de la Terre;

k = constante gravitationnelle newtonienne;
& = latitude;

et C est le nombre géopotentiel C=W,-W= I:gdH (PG, éq. 2-25)

ol W, et W sont respectivement les potentiels au niveau zéro et considére.

L’application de la formule de Stokes a ces anomalies a pour résultat une quantité ¢ appelée
hauteur anomale (height anomaly) qui est la distance entre la surface topographique et le
telluroide, une surface non-équipotentielle proche de la surface topographique obtenue par
reconstruction de la Terre réelle depuis le modéle ellipsoidal (Molodenskii & al, 1962). Cette
distance rapportée 4 I’ellipsoide est dénommée hauteur du quasi-géoide et a également pour
symbole ¢. Le quasi-géoide n’est pas non plus une surface de niveau mais équivaut au géoide
sur les océans o ¢ = N et reste trés proche de lui partout ailleurs sauf dans les régions
montagneuses. La formule exprimant la différence N - ¢ est donnée par (PG, éq. 8-102).

- = . A
N—C=g—_~Y—H=H —-Hz_‘gij‘?ﬂ[{
Y Y
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En pratique, compte tenu de la topographie en Belgique, nous pouvons assimiler ¢ a4 N sans
erreur appréciable pour la précision actuellement recherchée.

4.4 La procédure de retrait - restauration

La procédure de retrait (remove) consiste & retrancher des anomalies & Pair libre Ag,; son
contenu basse Agpor et haute Agropo fréquence pour obtenir des anomalies résiduelles Aggg,.

Agres = Agar - AZpot - ABTOPO

Les anomalies résiduelles ainsi obtenues ont une variabilité (déviation standard) fortement
atténuée qui permet d’appliquer la formule de Stokes avec un rayon d’intégration limité o
sans trop grande perte de précision. Le noyau d’intégration, S(v) ou fonction de Stokes, peut
subir diverses adaptations pour améliorer les performances du calcul ou se conformer a
certaines hypotheses.

On restaure (restore) ensuite I’information géoidale, aprés calcul (Ag — N) en sommant les
différentes composantes fréquentielles :

N = Npor + Nstokes + Nroro

Le résultat de cette opération de retrait-restauration fournit le ‘meilleur’ (quasi-) géoide
gravimétrique dans la zone ot I’on dispose de mesures gravimétriques et d’'un MNT.

4.5 Adaptation du géoide gravimétrique aux points GPS - nivelés

Malgré tout, il est possible que le modéle géopotentiel utilisé ne soit pas des plus performants
dans la région étudiée et introduise des perturbations 4 longue période, un décalage
éventuellement assorti d’une inclinaison, dans le géoide gravimétrique ainsi calculé. C’est
pourquoi il est préférable, si I’on dispose de points GPS-nivelés, d’adapter le géoide a ces
hauteurs géoidales géométriques. Pour ce faire, on utilise une transformation de similitude a
quatre paramétres (Ax, Ay, Az et un facteur d’échelle) ou toute autre technique adéquate, la
valeur de ces paramétres n’ayant pas de signification particuliére. Pour autant que les points
GPS-nivelés soient de qualité, en nombre suffisant et bien répartis, le géoide gravimétrique
ainsi adapté peut étre utilisé directement pour effectuer du nivellement par GPS. La précision
de ce nivellement dépendra bien siir de la précision du géoide gravimétrique, que la méthode
de Stokes ne permet pas d’évaluer. Par contre, les résidus de I’ajustement aux points GPS-
nivelés fournissent une mesure de ’adéquation des méthodes géométrique et dynamique sans
toutefois les départager. Ils peuvent cependant mettre en évidence des erreurs grossiéres
auxquelles la méthode géométrique est plus vulnérable. La méthode dynamique est moins
sensible & ce genre de probléme car ses résultats proviennent de I’intégration d’un trés grand
nombre de données.

1l existe une autre technique de détermination du géoide gravimétrique, appelce collocation,
qui fournit une estimation de I'erreur ou plutdt de la cohérence interne des parametres
estimés. Elle souléve d’autres problémes par la dimension des matrices utilisées lors des

85



calculs. Nous comptons I’appliquer dans un avenir proche et confronter ses résultats avec
ceux de la méthode de Stokes.

5. Application au calcul du géoide gravimétrique belge

Ce travail constitue un premier essai de calcul du géoide gravimétrique sur la Belgique. Il n’a
jamais été réalisé auparavant, d’une part parce que le besoin ne s’en faisait pas encore sentir
et d’autre part parce que la densité des mesures gravimétriques n’était pas suffisante. La
banque de données gravimétriques belge, grice aux nombreuses valeurs accumulées et
validées aussi bien sur le territoire national que dans les régions contigués, offre maintenant
cette possibilité avec la restriction du manque de données dans I’est du pays et de I’absence
momentanée de données sur les Pays-Bas et la Mer du Nord. Dans ces deux derniéres régions,
la lacune sera bientdt comblée. Néanmoins, la tentative méritait d’étre réalisée tout en sachant
que les résultats ne seraient que provisoires.

5.1 Les données

Sauf mention explicite, les unités sont le métre et le milliGal ou mGal. Le Gal, en hommage 2
Galileo Galilei, équivaut i une accélération de 1 cm sec”. Les axes des cartes reprises en
figure sont gradusés en km, la projection utilisée étant le systéme Lambert belge 72.

5.1.1 Le modéle géopotentiel

Le modéle géopotentiel utilisé est OSU91A (Rapp & al., 1991) complet jusqu’au degré et 4
ordre 360. 1l est généralement admis comme potentiel de référence pour ce genre
& application. Les anomalies a I"air libre qui en sont déduites sont représentées a la figure 3.
Le choix de la répartition des points est expliqué au paragraphe suivant.

5.1.2 Les anomalies gravimétriques

Afin d’économiser le temps de calcul pour ce premier essai, nNOus NOus SOMMES
volontairement limité 2 des données gravimétriques comprises entre 48°.8 et 51°.8 en latitude
Net 2°.5 et 7°.0 en longitude E. De plus, nous avons effectué un échantillonnage avec un pas
de 5 km sur les données contenues dans cette zone; il ne s’agit donc pas de valeurs moyennes.
L’ensemble ainsi constitué comporte 3.722 points de mesure.

Une correction de -2.32 m a été appliquée aux altitudes des données belges pour les rapporter
4 1a méme référence altimétrique que les pays voisins (Fig. 4), soit au systéeme du REUN
(Réseau Européen Unifié de Nivellement). Cette correction a son importance ainsi que nous
le verrons par la suite. Comme 1’impose I’'usage lorsqu’on établit des réseaux gravimeétriques,
les altitudes sont détermindes par rattachement aux réseaux nationaux. Il s’agit donc
d’altitudes brutes et non pas de hauteurs normales, ce qui n’a en pratique pas réellement
d’influence dans nos régions relativement peu escarpées.

Les coordonnées sont normalement établies sur I’Ellipsoide International. Idéalement, on
aurait dii effectuer la transformation pour se placer dans le World Geodetic System 1984
(WGS84) auquel se référe le potentiel OSU91A, mais les parametres proposés sont encore
trop globaux, trop peu précis pour mériter d’étre utilisés a ce genre de raffinement.

La réduction a I’air libre (PG, éq. 8-7)
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Ag = gp-Yo

est calculée en utilisant la pesanteur normale y calculée par la formule finie de Somigliana
(PG, éq. 2-78)

_ay,cos" @ +by,sin’ P
va®cos* @ + 5% sin® @

dans le Geodetic Reference System 1980 (GRS80). Cette formule a une expression plus
appropriée au calcul dans (IAG, 1971). La pesanteur normale y est la pesanteur théorique
calculée sur un ellipsoide de référence, dans ce cas-ci, celui correspondant au GRS30 en
pratique identique a celui du WGS84. Ceci garantit la cohérence entre la réduction a I'air
libre et OSU91A.

Enfin, on a appliqué une correction atmosphérique recommandée par 1I’Association
Internationale de Géodésie (IAG, 1971) pour éliminer I’influence des masses atmosphériques;
cette correction est presque constante pour ¢e qui nous concerne. Les anomalies a I’air libre
calculées au départ des mesures gravimeétriques sont représentées a la figure 5.

5.1.3 Le modéle numérique de terrain

Au moment des calculs, nous ne disposions pas de MNT sur la Belgique. On a donc généré
un MNT au départ des informations altimétriques liées aux observations gravimétriques. Ceci
signifie que ce MNT n’est pas plus homogene que la répartition des stations gravimétriques et
comporte les mémes lacunes. C’est bien évidemment un handicap pour une solution définitive
du géoide mais d’un autre cdté cela permettra de souligner, en les accentuant, les manques
dans la couverture gravimétrique du pays. La figure 6 représente I’effet du MRT sur les
anomalies de pesanteur. Dans une étape ultérieure, nous espérons utiliser un MNT possédant
un pas de 3” x 3” (3” ~ 93 m) dans le sud et de 3” x 6” dans le nord de la Beigique.

5.2 Les calculs

Les calculs ont été effectués avec le logiciel GRAVSOFT (Tscheming & al., 1992) largement
éprouvé et validé par 1’IGeS (International Geoid Service, D.1.L.A.R. - Politecnico di Milano).
Le travail a été réalisé a 1’Observatoire Royal de Belgique en collaboration avec le
Laboratoire de Recherche en Géodésie (LAREG), IGN - France, qui a mis au point une
procédure permettant d’exécuter de fagon trés efficace et aisée la succession de programmes
menant des données originelles au géoide gravimétrique (Duquenne & al., 1994).

Aprés "opération de retrait, on obtient des anomalies résiduelles (Fig. 7) beaucoup plus lisses
que les anomalies gravimétriques. La déviation standard des données se réduit de 15.965
mGal 3 6.812 mGal. On construit alors la grille des anomalies résiduelles en utilisant la
technique de prédiction par collocation avec les paramétres standards : longueur de
corrélation ¥, = 25 km et variance Cy = 1 mGal. Ultérieurement, si le besoin s’en fait sentir,
on déterminera plus précisément ces paramétres 4 1’aide de fonctions de covariance locale
construites sur les observations elles-mémes pour améliorer I’ interpolation.
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La correction de terrain résiduelle a été limitée 4 un rayon de 55 km. Nous avons étendu le
rayon d’intégration vy, de la formule de Stokes, appliquée a la grille des anomalies
résiduelles, 4 55°.

Comme le MNT n’était pas encore disponible, nous avons limité la procédure de restauration
4 1.068 points localisés sur le territoire belge ou 4 proximité, lorsque la densité de stations le
justifiait.

La table suivamte présente la contribution, en métre, de chacune des gammes d’onde au
géoide totalement restaurs :

information minimum | maximum | amplitude moyenne déviation
géoidale maximale standard
Npor 43.650 47.330 3.680 45.138 0.821
Nstokes -0.301 0.282 0.583 0.036 0.094
Nurr -0.079 0.135 0214 -0.003 0.034
NyoTAL 43.790 47.418 3.628 45.171 0.827
5.3 Les résultats

Les figures 8, 9 et 10 représentent successivement les grandes longueurs d’onde du géoide
gravimétrique calculées par le potentiel OSU91A, les moyennes longueurs d’onde obtenues
par I'application de la formule de Stokes aux anomalies résiduelles provenant des
observations gravimétriques et les courtes longueurs d’onde déduites du MRT. De la somme
de ces trois gammes d’onde résulte le géoide gravimétrique (Fig. 11) qui est normalement
I’aboutissement de nos calculs.

6. Adaptation du géoide aux points GPS-nivelés

Comme dit précédemment, le géoide gravimétrique est susceptible d’étre forcé par les
longues périodes du potentiel OSU91A. Or, I'IGN-Belgique vient d’achever un réseau GPS
d’ordre zéro, BEREF, comportant 32 stations en Belgique. Chacune des stations a été nivelée
par rattachement au Deuxiéme Nivellement Général (DNG). Bien que les hauteurs géoidales
qui nous ont été communiquées ne soient pas encore définitives, on peut considérer que la
précision relative sur les hauteurs ellipsoidales est meilleure que 5 cm dans les Ardennes et
que 3 cm dans le reste du pays, et celle sur les altitudes meilleures que 1 cm. Malgré le faible
nombre de données, nous avons dessiné les courbes de niveau leur correspondant (Fig. 12).
Cette carte est 3 mettre en relation avec la figure 8 qui représente le géoide calculé par
OSU91A. L’adaptation a été réalisée par moindres-carrés sur les 32 points GPS-nivelés en
ajustant les paramétres de transformation sur les trois coordonnées et en tenant compte d’un
facteur d’échelle. Les coefficients de cette transformation n’ont pas de signification précise,
I’objectif étant seulement de mettre le mieux possible en correspondance les deux surfaces
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aux 32 points communs. Il est a signaler que les hauteurs du geoide gravimétrique aux points
GPS-nivelés sont le résultat d’une interpolation qui a pu altérer quelque peu leur précision.

Les points GPS-nivelés I'ont été dans la référence belge du DNG tandis que les données
gravimétriques belges ont subi une correction d’altitude de -2.32 m, pour étre rapportées a la
référence altimétrique du REUN comme les altitudes des mesures gravimeétriques des pays
limitrophes. Ceci explique probablement, en grande partie, le décalage entre les deux surfaces
présenté a la figure 13 mais il faut éventuellement tenir compte aussi d’une inclinaison
relative introduite par le potentiel.

Finalement, on obtient le géoide gravimétrique adapté aux points GPS-nivelés (Fig. 14).
Celui-ci n’est pas nécessairement le ‘meilleur’ au sens de la géodésie physique mais
certainement le plus approprié pour des usages pratiques, comme, par exemple, le nivellement
par GPS.

La méthode de Stokes ne permet pas d’estimer la précision des calculs sinon I'erreur de
troncature. De toute fagon, cette erreur ne serait pas trés significative suite aux manipulations
de la technique du retrait-restauration et aux erreurs propres du modéle géopotentiel utilise.
On peut cependant estimer I’adéquation entre la méthode géométrique et la méthode
gravimétrique en considérant les résidus de I’ajustement entre les deux surfaces (F ig. 15). La
constatation s’impose que les résidus les plus €levés, dépassant 10 cm, sont tous les trois
situés dans des régions ou les mesures gravimétriques, et donc aussi, dans ce cas,
I’information altimétrique, font défaut. Partout ailleurs, on peut considérer que I’adéquation
est trés bonne, si pas excellente, compte tenu de I’échantillonnage opéré sur les données (§
5.1.2).

Le tableau suivant résume, en métre, les principales informations concernant 1’adaptation des
deux surfaces :

données minimum maximum amplitude déviation
maximale standard
N(GPS-nivelés) 41.834 45.646 3.812 1.151
N(gravimétrigue) 41.832 45.755 3.923 1.147
AN -0.117 0.112 0.229 0.051

7. Conclusions et prospectives

Malgré I’imperfection des données qui ont servi & ce premier calcul du géoide gravimétrique
sur la Belgique, les résultats sont concluants et on peut considérer que la précision
centimétrique est atteinte sauf dans les régions ou il existe un manque manifeste de données.
Un de nos objectifs est de combler ces lacunes.

Nous envisageons d’utiliser la technique de collocation par moindres-carrés et de comparer
les résultats ainsi obtenus avec ceux provenant de la méthode de Stokes. Cette technique
présente des inconvénients, par exemple les dimensions des matrices de calcul, mais elle
présente |’avantage de fournir une estimation de I’erreur interne des paramétres calcui€s.
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Dans une version ultérieure du géoide gravimétrique, on utilisera un MNT détaillé et on
tiendra compte des données gravimétriques sur les Pays-Bas et la Mer du Nord qui sont
actuellement en voie d’intégration dans la banque de données gravimétriques belge. En
densifiant, si faire se peut, la couverture gravimétrique de la Belgique et en utilisant les
formules de transformation de coordonnées que nous espérons bientdt obtenir du réseau
BEREF, il ne semble pas impensable d’atteindre une précision sub-centimétrique dans la
détermination du géoide gravimétrique. L’IGN-Belgique réalise pour le moment un réseau de
points GPS-nivelés avec une densité d’un point par 8 km? (Voet, 1995). On peut imaginer,
dans un but pratique, combiner ces données avec un futur géoide gravimétrique en une
banque de données qui serait utilisée comme référence altimétrique pour le pays. 1.’avantage
de cette intégration serait d’augmenter Ia resolutlon de 8 km 4 1 km ou mieux et de viser une
precision globale de I’ordre du centimetre.
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GEOID COMPUTATIONS IN THE NORDIC AND BALTIC AREA

Rene Forsberg, Kort- og Matrikelstyrelsen, Rentemestervej 6,
DK-2400 Copenhagen NV, Denmark. E-mail: rf @ kms.min.dk

ABSTRACT

A joint Nordic geoid model, covering the Nordic and Baltic areas, with special solutions for Iceland and
Greenland, are currently being computed in a cooperation project within the Nordic Geodetic Commission.
In this paper a new preliminary high-resolution (2.5 km) geoid model is presented, computed using spherical
FFT methods and terrain reductions. Compared to the previous joint solution (NKG-89), significant new data
has entered the solution, especially for the areas around the Baltic. The results of the new geoid are compared
to GPS-levelling along the Nordic N-$ and E-W GPS profiles, as well as to local GPS/levelling surveys. In
spite of significant improvements in data and methods, the new geoid models shows systematic errors much
worse than in the NKG-89 model, which produced 10 cm-fits over GPS/levelling lines of 2000 km extent.
The computation process and error screening is therefore ongoing. Examples of geoid-quasigeoid separations
in Scandinavia conclude the paper.

INTRODUCTION

A continous geoid and gravity data base project have been carried out for a number of years within
the Nordic Geodetic Commission (NKG), comprising the countries of Iceland, Norway, Sweden,
Finland and Denmark. The currently adopted joint geoid model, termed NKG-89, was developed
in 1989 using FFT methods on a 35 km UTM grid (Forsberg, 1990), and has successfully been used
for many GPS comparisons (e.g., Kakkuri (ed.), 1994; Ollikainen, 1993; Poutanen, 1993, Forsberg
and Madsen, 1990).

Fig. 1. Gravity data coverage (3’ x 6’ pixels) for southern part of Nordic and Baltic region
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However, since the level of the NKG-89 geoid was defined in a geocentric system (implicitly
determined by the OSUS9B reference model), comparisons to GPS/levelling geoid heights produce
a bias of typically 0.5-1 m. To avoid this bias it has been decided to compute a new geoid, in the
end fitting the final geoid to the EUREF coordinate system, and the joint european UELN height
datum. Another reason to compute a new geoid model was to obtain a higher resolution, and utilize
improvements in methods (spherical FFT) and improved reference fields (OSU91A, soon the new
DMA-GSFC enhanced WGS84 model), and the availability of much new gravity data, especially
in eastern Europe.

This paper presents a preliminary new high-resolution geoid model of the Nordic and Baltic area,
based on available gravity data, and most of the available digital terrain data.

The gravity data available for the new solution include data from all the Nordic geodetic agencies,
new data from Germany, Poland (5’ grid data), Lithuania, Latvia and Estonia, as well as most
ocean adjoining areas. Fig. 1 and 2 shows the current gravity data coverage in the Nordic data base.
Current main data voids are the southern Baltic Sea and parts of the North Sea, as well as in
Russia. Compared to the earlier coverage underlying the NKG-89 geoid (see, e.g. Forsberg, 1993)
the gravity situation has been much improved, especially in the Baltic region. It is planned to
utilize ERS-1 and Topex/Poseidon satellite altimetry data to fill up the southern Baltic, unless some
of the existing russian marine gravity data can be released.

[124s] 10%0 20%0 30%0

70%0 70%0

65%0 5510

1870 20"30

Fig. 2. Gravity data coverage, northern Nordic region
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Detailed digital terrain data are a necessary part of the high-resolution geoid determination process.
New dense DTM-data (100 m resolution) have been used in Norway for improved terrain
correction computations according to agreed standard computation methods (D. Selheim,
pers.comm.). In Sweden a complete set of 500 m-height data have been made available, and has
been used for terrain correction computations in the mountainous regions (lowland regions have
yet to be computed). Lithuania and Denmark also contributed new DTM data at 500 m or 1 km
resolution, and for remaining regions more coarse models have been used, cf. Fig. 3.

A NEW HIGH-RESOLUTION FFT GEOID

The new geoid model is based on the Siokes’ integration of gridded gravity data by the multi-band
spherical FFT method (Forsberg and Sideris, 1993), using RTM terrain reductions for smoothing
the data prior to FFT (cf. Forsberg, 1995). In the region of interest (53°-73° N, 0°-32°E) a "pixel-
selected” subset of 139192 gravity points have been used.

The geoid solution is build up in the usual "remove-restore” fashion by three terms

C=C1+C2+C3

where the first term is from a spherical harmonic reference field, the second term from terrain
effects, and the third term from the residual gravity field. Because of the way RTM effects are
used, the geoid computed will technically be a quasi-gecid, and hence height anomalies are
obtained rather than geoid undulations. However, in the sequel the word "geoid" will be used rather
loosely as a "generic" term for both quasi-geoid and the classical geoid. An example will be given
on the typical magnitude of differences between geoid and quasi-geoid.

As reference field for the present computations a temporary combination reference field of JGM-2
and OSU91A have been used (provided by S. Kenyon, DMA). The reference field was computed
in grids in order to facilitate rapid interpolation for the subsequent computations. The atrospheric
correction on gravity (0.87 mgal at sea level) was included in the reference grids as well.

The RTM method reduces topographic data for topographic irregularities relative to a smooth mean
height surface. This mean height surface was constructed by running averages over a basic 1.5” x
3’ height grid, yielding a reference surface of resolution appr. 100 km. The computations of terrain
corrections and subsequent RTM-reductions was done by prism integration, using classical terrain
corrections as intermediate steps. Table 1 below shows the impact of the reference field and RTM
terrain effects. The residuals after reduction are significantly smoother than the original data, with
a bias value very close to zero.

Table 1. Statistics of data reductions

Unit: mgal | mean std.dev.
Original data (144807 pts.) -0.44 26.02
Ag - ref.field -1.74 17.31
Ag - ref field. - RTM 0.05 11.58
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The geoid solution has been carried out on a 1.5” x 3’ grid, using least-squares collocation for data
gridding, assuming a data correlation length x,,, of 25 km. The gridded, reduced gravity anomalies
have subsequently been converted to geoid undulations by using 9-band spherical FFT methods.
The FFT was carried out on a grid of 900 x 720 points, using a zero-padded border zone to limut
the periodicity effects. The geoid contributions from gravity and topography are shown in Fig. 4
and 5, and the final geoid after restoring the reference field is shown in Fig. 6. The statistics of the
contributions from FFT and the terrain is shown in Table 2.

The geoid model has been compared to GPS/levelling height anomalies along two traverses: A
north-south line from the danish/german border to Tromsg ("IfE" line), and an W-E profile from
Bergen in Norway to the russian/finnish border ("SWET" profile). Both of these lines are nearly
2000 km long, and done along 1st order levelling lines. The comparison of the NKG-89 geoid and
the new geoid model is shown in Table 2 as well. The datum of the GPS traverses are ITRF91 (IfE
data transformed onto SWET data using a common crossing point). '

From Table 2 it is apparent that the new geoid model performs much worse than the older NKG-89
model. This is surprising, given that much improved data and methods have been used. The
difference in the models is mainly a "bulge" over the mountainous regions, and could indicate
systematic errors in the way the new RTM corrections were applied. However, bugs in the data can
not be ruled out at the present preliminary stage. Additional computations are currently being
carried out to try and isolate the error. Test computations repeating the computations of NKG-89
with the new data shows the same problems, and indicates data-related problems. Also differences
between spherical and planar (UTM) FFT methods are insignificant and can not explain the
problem.

Table 2. Geoid height statistics and comparisons on long GPS lines

Unit; meter mean std.dev.
Geoid effect from 0.01 0.54
spherical FFT

Geoid contribution 0.00 0.15
from RTM )
Comparisons on GPS

lines:

IfE: NKG-89 0.12 0.10
IfE: New model -0.42 0.18
SWET: NKG-89 0.34 0.12
SWET: New model -0.24 : 0.33

That the new solution do perform reasonatly good locally (a consequence of new and denser data)
can be seen in Table 3. In this table is shown GPS- levelling geoid fits for three different regions:

1) Southern Finland, a region a low gravity variablity and dense gravity coverage - 12 points (part
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of SWET traverse).

2) Trondheim region, Norway (moderately mountainous) - 20 points (provided by G. Simensen,
NTH).

3) Lithuania - 38 points on first order levelling benchmarks (provided by E. Parseliunas, LTU).

Table 3 shows the mean and standard deviation of the computed geoid without any fit to GPS, and
after a 4-parameter empirical datum fit of form

AN = cosdpcosAAX + cosdpsinAAY + sinpAZ + Rs

to the profile data (Forsberg, 1993). This datum parameter fit mainly absorbs errors in the geoid.
From the table it can be seen that the NKG-89 and new geoid model perform comparably after the
long wavelength errors are removed by the fitting process. In Lithuania, where the NKG-89 geoid
model had no gravity data available, the new model performs relatively well.

Table 3. Local GPS-levelling geoid differences

Area and geoid model Without local fit After fit of 4-par. model
mean std.dev. mean std.dev.
Finland NKG-89 0.353 0.043 0.000 0.037
- New -.585 0271 0.000 0.037
Trondheim NKG-89 0.760 0.075 0.000 0.060
- New 0413 0.095 0.000 0.061
Lithuania NKG-89 0.927 0.530 0.000 0.299
- New -1.332 0.402 0.000 0.103

Example of the geoid-quasigeoid separation

When producing large-scale national geoids it is of course important to discreminate between the
geoid and the quasigeoid. The relations between the quantities involved are

h=H+N=H+{

where h is the ellipsoidal height, H the (Helmert) orthometric height, H' the normal height, N the
geoid undulation, and { the height anomaly. The differences between N and { may to 1st order
be expressed by (Heiskanen and Moritz, 1967)

Ag,
Yo

H

{ -N=Hp- Hp = -
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This approximation may be viewed as exact when Helmert orthometric heights are used, as the
Helmert approximation corresponds closely to the Bouguer plate approximations underlying the
above formula. Fig. 7 shows the Bouguer anomalies of southern Norway, the most mountainous
region in Scandinavia, and Fig. 8 the corresponding geoid-quasigeoid separations. The maximum
value of the scparation is 20 cm, and therefore highly significant. It is therefore important for users
to be aware of the height systems in use, and perform the necessary geoid or height transformations
as required. In the case of the Nordic geoid cooperation build both geoid and quasi-geoid may be
built into the same interpolation package, and dependent on national height system (e.g. orthometric
heights in Norway, normal hejghts in Sweden) the "correct” geoid answer is obtained.

Conclusions

In this paper a status for geoid computations in the Nordic countrics have been given. A previous
solution - NKG-89 - has yielded extremely good results - down to 10 cm r.m.s. over 1000 km -
but newer solutions apparently suffer from systematic errors, the source of which are still under
investigation. However, in the Baltic region, where gravity data were previously not available, the
new model represents a significant improvement.
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ABSTRACT

In the scope of the determination of the French geoid, numerous developments and tests are
undertaken, in order to delimit and solve the problems conceming the quality of data and
methods. The paper presents an experimental determination of the geoid in a French region so
called Alps, Provence and Céte d'Azur. A solution is obtained from gravity data, using Stokes
integration and a remove-restore technique. It is compared with GPS and levelling derived
height anomalies. Some conclusions are proposed, concerning the improvement i data
processing and gravity measurement coverage. With the aim of suiting the gravimetric (quasi)-
geoid to GPS levelling, an adjusment method is presented.

INTRODUCTION

The precise determination of the gravimetric geoid in the French Alps has been deemed until
now as a difficult task. Owing to the roughness of the topography, it is necessary to usc
advanced methods, which were unavailable at the time of previous attempts, as one can see in
(Levallois, 1971a), (Delomenie, 1987) and (Balmino, 1992). This problem is now overcome by
remove-Testore techniques implemented on modemn computers. Secondly, the assessment of
the quality of the results was more or less risky (Levallois 1971b). The development of GPS
associated with the old spirit levelling technique provides now an efficient tool to compare
gravimetric geoid undulations and point values on GPS station. The third obstacle in the way
of the determination of the alpine geoid is still an haunting question, as it shall be shown later:
the irregular distribution of the gravity data. Nevertheless, the determination of the geoid in
this area is interesting on several account. By undertaking the task presented in this paper, the
goals of the authors was multiple:

s To take part in the tests and comparisons of methods and sofiware , in co-operation with the
CNES/BGI, before the computation of a geoid covering whole France

e To compare gravimetric realisations of the geoid with a levelling and GPS network on an
area where both methods may present some weaknesses

* To explore the performances of GPS levelling in mountainous area
e To estimate the possibility to check the vertical co-ordinates in GPS networks
e To examine the problems in merging foreign and French data, especially digital terrain model.

The location of the test area is shown in figure 1, and the regional topography in figure 2.
The highest mountain in the area covered by the digital terrain mode] is the Mont Blanc (4807
m), and numerous mountain tops exceed 3000m in height (Monte Viso 3841 m, etc.).
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GRAVIMETRIC GEOID COMPUTATION

Description of the data and their preparation
The data consisted of a geopotential model, digital terrain models and point gravity values.

The geopotential model was OSU91A, developed in spherical harmonics complete to degree
and order 360 (Rapp, 1991).

The gravity data set was issued from the data base of the Bureau Gravimetrique International
(BGI), which ensured the validation, (Toustou, 1991). A subset of 2769 values was extracted,
setting a minimum distance of 4 km between points. The heights of the gravity station was
checked by comparison with the digital terrain model described below. On Mediterranean Sea,
only surface gravity measurements were taken into account. The gravity coverage and gravity
free air anomalies are shown in figure 3. Table 1 give some statistics.

Table 1. Statistical description of gravity anomalies (free air, model OSU91A, residual) (unit:

als).
Min. Max. Mean RMS Std. dev
Agr, -131.33 133.41 1.10 33.05 33.03
A riose -108.19 135.59 24.44 38.00 30.38
Ag een -86.3 106.87 6.04 18.93

In and around the area of interest, two digital terrain model were merged. The first one was a
7.5" x10” grid covering the north-west part of Italy, and including bathymetry. The second
one, covering France, was a fittle more accurate (4.5” x 6”), (see Duquenne, 1992), but did
not contain any bathymetry. So it was decided to set the batymetry to 0 and not to apply
terrain corrections at sea. During the merging process, the Italian DTM was shifted in latitude
and longjitude with respect to the French one, in order to minimise the discrepancies along the
frontier. This was a tedious task as the frontier crosses a high mountainous region where all
known interpolation techniques more or less failed. Appreciable improvement was however
achieved: for latitudes between 45° and 46°, were the heights vary from 2000 to 4800 m, the
RMS of the discrepancies falling down from 125 to 57 m. The merged grid was checked by
comparison with existing maps at scale 1:25000, especially along the frontier. Its limits were
42° and 46° in latitude, 3° and 9° in longitude (11.5 millions values). Two others grid were
derived: a coarse ome (1.5' x2’) to accelerate integration processes and a fiitered one for
residual terrain model reduction. In the last case, a moving average window of 30’ x 40" was
used. The map (figure 2) is issued from the coarse DTM and point out the roughness of the

topography.

Remove restore and integration techniques
The applied remove-restore technique is derived from (Balmino, 1992), and can be summarised
as follow:

« From gravity values g, compute free air gravity anomalies including atmospheric correction,
using GRS80 formulae (Moritz, 1992) :
5g, =0.874-9.9x10°H  (mgal)

07
AgFA =g+5gm+§iﬂ_yo
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o From the detailed, coarse and filtered digital terrain models, compute the direct and indirect
residual terrain effects on gravity:

H-H,
S8nr = Lp(—ﬁ—o_)"df

1
O8rr = 7%5WRT

0

e From a geopotentiai model developed in spherical harmonics, compute the gravity anomaly
of the model on the geoid:

dy
AZ vioaer = Ertoaer — Vo N rsoaer E

e Compute point residual free air anomalies and grid it:
AZpes = AZps — (5gm" — 08 pr ) ~ A8 spoie

e Using Stokes' integration formula, compute residual undulations of the co-geoid on the
wanted grid and on GPS points:

R
N =4_'“J' AgRFAS( wido
Ty <e .

e Compute the indirect terrain effect on the geoid:
1
SN =— Wy
/4
» From the geopotential model and the above quantities, compute the geoid undulations
N =N +Ny +N,

e Compute Bouguer anomalies and the correction to get the quasi-geoid:
Agp = Agp, —27GpH

¢=N-28p
7

The figure 4 and the table 1 depict the residual anomalies, which are very smooth, with
regard to the free air ones, except off the Hyéres Islands, since no terrain corrections were
applied at see. The integrations were performed by classical methods (no FFT), using
"STOKES" and "TC" routines of the GRAVSOFT package (Tscheming et al., 1992). The
finest DTM was used at distances less than 35 km, and the coarse DTM at a radius up to 55
km. This may be considered as insufficient, keeping in mind the roughness of the topography,
but was limited by the available amount of mass storage memory of the computer (a PC with
100 MHz-processor). The figures 5 shows the obtained solution.

COMPARISON OF THE GRAVIMETRIC QUASI-GEOID AND HEIGHT
ANOMALIES DERIVED BY GPS AND SPIRIT LEVELLING.

The French Institut Géographique National is completing a new geodetic network (RGF) m
order to replace the old so called "New French Triangulation” (NTF). The new network will
comprise a reference network of 23 points, which is already completed (Willis, 1994), and a
first order network (RBF) of about 1000 GPS points, that is to say 1 point every 20-25 km.
Provisional co-ordinates are available for half of the points, just for the southem part of
France. The normal heights of all the points have been measured, so that height anomalics may
be derived, the local precision of which may be estimated at 0.02 m in flat areas, and two or
three times more in the mountains. So it was possible to compare 66 anomalies with the

117



gravimetric quasi-geoid. Figure 6 render the differences g — {g,y between the RBF derived

height anomalies and the gravimetric quasi-geoid. Discrepancies appear, due to a lot of causes
(see (Forsberg and Masden, 1990), (Duquenne et al., 1995)):

o difference between the reference system of the network (close to EUREF, but at present not
well fixed as final adjustment is not completed) and the reference of the gravimetric quasi-
geoid

o difference between the quasi-geoid and the reference of the French height system (IGN69)
e errors in the coefficients of the geopotential model, especially long wavelength errors

» errors in residual geoid undulation N
s errors in GPS and levelling network.

Tn order to remove the long wave length effects and to point out the two last kind of errors, a
trend was subtracted of the discrepancies {ppr — &g,i5 USIDG @ 3-parameters regression. A first
computation permitted to fully confirm the existence of two suspected blunders (magnitude:
0.20~0.40 m) in the (provisional !) GPS network. After one correction and one rejection, the
results are as follows:

constant bias: —1.087 m

mean slope toward east:  16.2 mm/100 km, 0.03"
mean slope toward north:  47.0 mm /100 km, 0.10”
standard deviation of the residuals: 0.116 m
maximum residual:  0.296 m

The residuals are mapped in figure 7. They seem to be greater than the errors expected from
the RBF and levelling network, and the errors in the gravimetric quasi-geoid might account
for the major part of them. In the figure 8, where the gravity points have been plotted, the
largest residuals (0.10 ~ 0.25 m) appear to be located in the high mountainous area and near
the Mediterranean Sea, where the gravity data are lacking. On the contrary, residuals are
smaller (0 ~ 0.12 m) in the north-eastem part of the test area, where the topography is smooth
and the gravity data are numerous and well distributed. There is no doubt that the residuals
could be reduced down to 0.05 m in this favourable conditions, by a local adjustment. These
remarks allow to conclude that, in view of a gravimetric geoid with homogenous precision, it
needs to increase the gravity coverage in the Fremch Alps. Slight improvement may be
expected from introducing other existing data (satellite altimetry on Mediterranean), or by
refining the strategy to sample the gravity data in the Alps, or by using better terrain reduction.
Tt is also well known that GPS and levelling measurements are especially affected by systematic
errors in mountainous area. But the lack of gravity data remains the main problem.

COMBINED ADJUSTMENT OF GRAVITY AND GPS LEVELLING SOLUTION.

In view of the use of GPS for levelling, an adjustment method is proposed in this section. This
method is implemented as a part of the software PILI, which the second author of this paper is
developing. The goal is clearly to adapt the gravimetric (quasi-)geoid to a set of levelled GPS
reference points. Two kinds of errors may be considered: . 1) The accidental ones, introduced
by some random causes are nothing special but the ordinary surveying errors which often obey
the normal deviate and can be eliminated in least square sense. 2) The systematic ones in our
case are caused by the differences in reference systems, the long wave-length errors of the
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geopotential model used, the biases existing in the gravity data and in the digital terrain model
(DTM) etc. The later biases can be furthermore divided into two parts: a) Global tendency,
which happens due to reference systems and to the discrepancy between the geopotential
model and the gravity and DTM data. This depends on the method applied, especially when the
r.r. technique is applied; b) Local deformation, which is caused by the systematic surveying
errors, local reference systems (in border areas of a country for example) and the use of
different data sources etc. The systematic errors are usually represented and then determmed
by using the linearised approximation models.

Combined adjustment model,
The principles for the combined adjustment are: :

1) For the gravity geoid data: taking the difference of the geoidal height as the
observation to establish the relative observation equation i order to eliminate the local
deformation and short-wavelength errors. The unknown parameters will be locally determined.
For this purpose, the whole gravity geoid (usuaily in grid form) should be divided into several
smaller picces according to certain specifications: geographical location, relief of topography,
different data sources etc. A reasonable division is a very important factor to reach the best
adjustment result.

2) For the GPS and levelling data: taking the geoidal height itself as the observation to
establish the absolute observation equation in order to absorb the long-wavelength errors. The
unknown parameters for the reference system transformation will be globally determined.

3) Establish the constraint condition to combine the various divided pieces (sub-zones)
of gravity geoid and to determine the local and global parameters

4) Perform the combined adjustment as a whole or in groups to determine the final
geoid and its adjusted precision, both usually in grid form. For this purpose, the problems
concerning the weight, the sparse linear system and the adjustment in groups etc. have to be
studied.

Observation equations

Some notations for this section: {%° = height anomaly corresponding to the quasi-geoid
determined by GPS and levelling combination; {* = height anomaly corresponding to the
quasi-geoid determined by gravity method; ¢ = adjusted height anomaly, Ag} = difference of
height anomaly; P, P = weight of relative observation equation; 7, P = weight of
absolute observation equation; V¥, = residual of adjustment; 7(F), AT(F) = global
transformation model an its differential with F as the set of parameters; ff) = local deformation
model with f as the set of parameters. : ‘ :

Denoting i, j, k the points on the quasi-geoid and introducing the systematic error models: the
global transformation fiunction 7(F) and local deformation function #(f), the generalised
relative and absolute observation equations is:

PE V,=¢ - 6 - AL +AT(F)+1(f)
PkGPS: Vk =c§ _é'kGPs +T(F)

In the following paragraphs, the practical formulas of the weight P, the systematic models T(F)
and A#) as well as the constraint conditions for the common points in the adjacent pieces are

given.
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Global transformation model T(f)

The various wavelength errors in the gravity solution may be approximated by different kinds
of fimctions in order to fit the (quasi-)geoid to a set of GPS levelling pomts.

Periodic model represented by a trigonometric function:

Supposing the periodical errors dependent on latitude amd longitude, the following
trigonometric function may be used to approximate them:

P
A=Y [xw cos(@,9) + ¥, , sin(@,p)+x, , cos(w,A) +, , sin(w,,ﬂ)]
n=1

where P, is the total number of the introduced periodic terms, # is the sequential number of the
periodic terms. More complicated finction may be chosen to take into account the correlation
of periodic errors in longitude and latitude. As already said, one of the advantages of this
method is to make possible to benefit of the "relative” precision of a gravity geoid. The
corresponding relative form of the above formula is:

AL = 2{ xn,w[cos(a)n@j) - cos(a)ngv‘.)] + y,,’q,[sin(cu,,qaj) - sin(w,,@,.)]

n=l

+x,, [cos(cuni i) cos(cunzli)] +y, J[sin(wnl D sin(a;,,ﬁ,.)] 4

Similitude transformation model:

For the very errors due to reference system difference, the well known 7 parameter similitude
datum shift transformation model in Cartesian co-ordinates can be used. Considering that the
resulting error in geoid is not so sensible to the rotations, it can be simplified as 4 parameters

(AX,AY,AZ k) where AX,AY,AZ are the three translations and % the scale term, for only the
vertical direction to the geoid:

AL® = cos pcos AAX +cos gpsin AAY +sinpAZ +k x r
where r is the earth radius. The relative form of this formula ( % is cancelled) is:

A§§ = (cosp, cos A, — cos ¢, cos A, )AX + (cos ¢, sind; — cosg; sin4,)AY +

(singp; -sing; )AZ

Polynomial model:
This model may be adequate to absorb non-periodic large scale systematic errors, such as
systematic levelling errors:

AF =2 +30, (90— 0,0 (A-1,) cos® @, p.g=012,..
e

where @, A are the latitude and longitude, @,,4, is the mean value of 4, . The O, are the

polynomial coefficients. The relative form of this fornmla can be easily written out (note:
(P @, A, will be cancelled or can be ignored):

ACE = 0,,(@) ~ 9) + 0y, (A} = Al)cos g, +
0,0 (97 = @17 + Qo (AT — A7 )cos @, + 0y, ()4 — piA])cos o,
¢'=¢_¢01 ;L'=’1_;"0

Local deformation model

Speaking in view of differential, when the divided pieces of the gravity geoid are small enough,
the local deformation can be approximated by a linear function:
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AC = ALY + a(@p— 9,) + b cos o (A — Ay) = Agy + a(@ — py) + b(A = Ay), b=D'cosg,

 where the constant and coefficients can be determined with some conditions.

Constraint condition

Some constraint conditions are needed to combine the gravity geoid pieces in the sense of least
square solution. They should satisfy: (1) a geoid piece should be optimally fitted to the levelied
GPS points which are contained in the gravity geoid piece itself, (2) the common points
belonging to the different adjacent pieces will have the same adjusted values; (3) “repeated
observations" are allowable, for example, when there exist several gravity geoid solutions on
the same surface (that is, for a point there are several gravity geoid solutions) calculated from
the different sources of gravity data. This constraint condition has the same form with that of
the local deformation model #f) with the unknown coefficients to be determined. Suppose the
wanted function can be approximated and represented by a differential plan in 3D space, one
can write:

Constraint equation for common point observation k at the intersection of the geoid pieces
number I, m, n, ...

diy +a' (@, = @) +b' (A, ~ Ao) =dCg +a" (@, — @7 ) +07 (4, = Ag) =
déy +a"(p, —@y)+b" (A, - A,) =... _
Constraint equation for a relative observation (i,j) in border of the geoid pieces number I, m:
dg;" =dgy ~dgT +a' (9, - @) +b (A, - Ay) —a" (9, - 97) —b" (4, = A7)
This equation will be solved in practical computation by ordering: d¢, =d¢y.

Weights
Denoting Mg, M, the mean square errors of the observations for GPS/levelling and gravity
solution, 4, the unit mean square error, weights are defined as follows:

2
Ho .

b3
&

2
Ho_ .
2 2
MGPS
In order to fix or to free an observation: P—>wor P—=0.

relative observation equation; P* =

absolute observation equation. P** =

Results
An adjustment has been attempted with the gravimetric quasi-geoid and the levelled GPS
network described above. Only one local set of parameters was introduced as unknowns. The

weights P> and P° were fixed to 2 and 1 respectively. (It would be better to use the
variance-covariance matrix of the GPS and levelling networks adjustments, but this was not
available). After rejection of one point (as above), the precision of the adjustment was
estimated by the following indicators:

standard deviation of unit weight: 0.0196 m ‘
standard deviation of the residuals on levelled GPS points:  0.043 m
maximum residual on levelled GPS points: 0. 106 m

The figure 8 shows the residuals, to be compared with those of the 3-parameters regression
(fig. 7).
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The method seems very useful for blunder detection: if the weight of a suspicious GPS point is
decreased down to a small value (i.e. 1/100), its residual take a valie close to the true error,
which appears more clearly than in the case of a simple 3 or 4-parameters adjustment.

SUMMARY AND CONCLUSION

In the scope of the research on evaluation of methods for gravimetric geoid determination,
partial results have been obtained. In a mountainous area, remove restore technique gave a
precision of about 0.12 m, proved by comparison with a levelling GPS network. Nevertheless,
the precision is reliant to the quality of the data, and a fine DTM is not sufficient to replace
lacking gravity data. A combined adjustment of a. gravimetric quasi-geoid and height
anomalies derived from a GPS and leveiling network has been presented, which seems to be
efficient for bhunder detection and GPS levelling applications.
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Fig. 1. Location of the test area: limits of the DTM, the gravity data set and the geoid.
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Fig. 5. The quasi-geoid. Contour interval Im, supplementary contours every
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Fig. 6. Differences between the RBF derived height anomalies and the gravimetric quasi-
geoid. Constant bias removed. Contour interval 0.05 m. Grey circles represent the RBF GPS
levelled points.
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Fig. 7. RBF GPS points and residual differences between the RBF derived height
anomalies and the gravimetric quasi-geoid, after a 3-parameters regression. Contour
interval 0.10 m, supplementary contours every 0.05 m (dashed lines).
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Fig. 8 Residual differences between the RBF derived height anomalies and the gravimetric
quasi-geoid, after a combined adjustment with PILI software. Contour interval as in fig. 7
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Abstract

This paper describes the new model geoid for Great Britain called EDIN91, as
well as its recent predecessors, EDIN89 and EDINS891, also noting the
objectives for the next geoid EDIN95, now in preparation. EDING91 appears to
identify a north-south trend of 0.28 mm km-l in the global gravity model
OSUS1A over an 800 km baseline in Britain. Accepting this trend and allowing
for the 697.7 mm difference in ellipsoidal radius to adjust OSU91A to ITTRF90
gives an absolute correction of 3.3 = 10.3 mm for the Newlyn Datum, based
on six GPS/MSL tide gauge geoid heights given by Dodson et al (1995). This
result may yet prove spurious because there are known small adjustment errors
in the gravity data set. A definitive assessment of the quality of the new geoid
awaits the outcome of a re-evaluation of the gravity and topographic data now
taking place in preparation for EDIN95S and the availability of better
distributed GPS control in northern Britain.

1 The British geoid models EDIN89, EDIN891, EDIN91 and EDIN9S

The geoid model EDIN89 (Stewart & Hipkin, 1990) covered a region of Great Britain and
the North Sea 1000 by 900 km in size. It was computed using a conventional fast Fourier
transform algorithm from land and marine Bouguer gravity anomalies on a 2 km grid, a 2 km
digital model of mean topographic heights and the global potential model OSUBGE. A
detailed review of the methodology and the practical error budget of the computation are
described in Hipkin (1995).

This paper reports a recomputation using essentially the same local gravity and topographic
information but using the model OSU9IA for the global field. A provisional version was
initially computed using a semi-empirical correction for the change from OSUS6E to
OSU91A; this was called EDIN891. The full recomputation is called EDIN91.

The geoid model EDINS91 attempted to provide some of the improvements of the new global
potential model, without a complete recomputation of the geoid. The semi-empirical
correction was based on the proposition that components of the global model with
wavelengths shorter than 300 km would be completely corrected by the local gravity and
topographic data but that changes in the global model with longer wavelengths would modify
the computed geoid. The geoid height difference between the two global potential models
was calculated and then filtered with a low pass filter whose response diminished with a
cosine taper from 1 at 1000 km wavelength to zero at 300 km wavelength. All wavelengths
shorter than 300 km were suppressed completely. Adding this low-pass filtered version of the
geoid height difference OSU91A - OSUSGE to EDIN89 gave the provisional geoid model
EDIN391.
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EDINS91 has now been superseded by the model EDIN91 described here. EDINO1 still uses
the same gravity and topographic model as EDIN89 but differs both in the global gravity
model used 4nd in the implementation of the transformation. A new geoid model EDIN9S is
in preparation using an extended and readjusted gravity data set to reduce the effect of Jong
wavelength errors in the global model.

With the greater computing power now available, the Fourier transform of some 225000
values could be carried out for EDINO1 in a single operation. EDIN89 had been computed in
four separate transformations, each covering a2 700 km square; the final model was obtained
by merging the four areas, adjusting their relative datum levels by minimising the misfit along
the centre of the 400 km overlap.

2 Transformation algorithms

For all the Edinburgh models, the transformation from gravity anomaly to geoid height was
carried out using a two-dimensional fast Fourier transform. For this, the gravity and
topographic data were gridded at 2 km intervals of the Transverse Mercator Projection of the
Ordnance Survey of Great Britain. By using map projection coordinates, the 'flat Earth'
approximation inherent in the conventional use of the Fourier transform only introduces errors
of the order of the wavelength divided by the circumference of the Earth. Because the Fourier
technique can in any case only transform components with wavelengths less than about one
third of the length of data, the maximum error due to the 'flat Earth' approximation is of the
order of the data length divided by 120 000 km (Hipkin, 1995). This makes the approximation
good to better than 1% for a data set 1000 km across. The transform is only applied to
gravity residuals with respect to the global potential model. The resulting residual geoid has
an amplitude of less than 1 m so the transformation error will be less than a centimetre for
components with wavelengths of 300 km or less. The use of map projection coordinates also
eliminates the need for ellipsoidal corrections: the map projection already transforms an
ellipsoidal surface onto the plane.

Although recent work by Strang van Hees (1989) and Haagmans et al (1994) has shown that
Stokes' integral (a rigourous transformation for regularised gravity anomalies available on
the whole of a spherical surface) can be cvaluated efficiently using Fourier methods, the real
problems do not lie with the transformation algorithm: the conceptually simpler ‘flat Earth'
approximation is entirely adequate and indeed has some advantages. The real problems with
geoid computation lie first with the inadequacy of the gravity and topographic data and -
secondly with the need to localise the transformation.

Hipkin (1995) examined in detail the accuracy available when well distributed and accurate
gravity and topographic data were available, finding RMS corrections of only about 3 mm for
the relative geoid at sites in a test network near Matlock in the English Peak District. There,
the gravity and topographic data could be legitimately interpolated onto 500 m and 100 m
grids respectively. The accuracy specification for the original gravity observations had been
set at 0.04 mgal. This study did not address the consequences of less accurate or well
distributed data, nor the effect of long wavelengths remaining in residual gravity because of
errors of omission or commission in the global potential model. It sought only to demonstrate
that the practical algorithm was intrinsically capable of sub-centimetric accuracy.

3 Long wavelengths in the residual anomalies.

The quality obtained with a Fourier technique (whether conventional or the Strang van Hees
application to Stokes integral) depends upon having a band limited operand: there must be no
significant power either at wavelengths longer than about one third of the data length or at
wavelengths shorter than twice the sampling interval. How to deal with short wavelengths
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was described in the Matlock study but the absence of long wavelengths depends on the
quality of the global potential model and is investigated here.

Free air anomalies were computed from the OSU91A model at 0.1° and 0.2° intervals of
latitude and longitude and then interpolated onto the same 2 km grid as the local gravity and
topographic data. The spectrum of the residual anomalies rises monotonicly over the whole
range from shortest to longest wavelengths and gives no indication of being long wavelength
limited. In the space domain, the residuals over the 1000 by 900 km region were neither
trend-free nor zero-mean: local free air gravity minus OSU91A had a mean value of
0.9158 mgal with_ a least squares linear trend of 0.0026 mgal km-1 eastwards and
- 0.0024 mgal km! northwards. Geoid solutions with and without removing this trend were
computed but not removing it will certainly bias the Fourier transformation and EDINO1 was
derived from trend-free residual anomalies. As a consequence, it will be subject to an error
with a linear trend but with an indeterminate amplitude. It is hoped that the two-stage

algorithm devised for EDIN95 will reduce this problem. .

4 Conclusions and comparisons with GPS/MSL

The accuracy of a geoid model can be assessed in two ways: first, an internal error budget can
be evaluated by looking at the inherent accuracy of the gravity and topographic data and at
the imperfections in the algorithm by which they are transformed to geoid height; secondly,
there can be an external comparison with a completely independent method of geoid
determination. The second approach is philosophically more satisfactory but is probably not
to be available for small local networks where a relative gravimetric geoid appears to be more
accurate than any other technique. At longer wavelengths, the position of mean sea level with
millimetric accuracy is directly available at a tide gauge bench mark. Ellipsoidal heights
obtained with modern GPS receivers and software should be good to a centimetre but
unmodelled errors with long range levelling means that the GPS site needs to be within a few
tens of kilometres from the coast.

EDINS91 was compared with tide gauge data and GPS observation undertaken by the
University of Nottingham (Dodson et al, 1995). There was good agreement for the southerly
500 km of the area - simply a datum shift of 483 +49 mm, but EDIN8S1 was very
anomalously higher than GPS/MSL at Aberdeen by 974 mm. (See Table 1) The discrepant
behaviour in the north was seen both in the raw OSU91A geoid heights and in EDIN891 but
not in a Stokes integral geoid computed by Featherstone and Olliver (1994), which was not
based on OSU91A and which used a more recent adjustment of British gravity data. This
suggested one possible source of the discrepancy: there may have been a small error in
Northern Britain in either OSU91A or the local gravity data set used here, which was not
being corrected by the empirical transfer. The rigourous recomputation to give EDIN91 was
directed towards identifying the source of this discrepancy.

The EDIN9] computation suggests three interesting conclusions but is not definitive because
of known deficiencies in the adjustment of North Sea gravity data and the scarcity of GPS
control in northern Britain, The first conclusion is that the long-wavelength trend in the
residual anomalies has been translated into a small north-south slope in the model over
Britain; the second is that the 'error’ in the Edinburgh geoids at Aberdeen is now just part of
this slope and is very consistent with it; the third is that the internal consistency of EDIN91 is
much better than EDINS91 so that the absolute vertical datum for Britain may have been
determined with an unprecidentedly high precision.

Table 1 shows the effect of taking the trend (0.69288 + 0.0002797 N) m from the difference
EDINO1 - GPS/MSL. (N is the grid northing in kilometres. There is no detectable east-west
trend.) After removing this trend, the residuals at six tide gauge sites, which span some
800 km north-south range, have a standard deviation of only 10.2 mm. It is understood that
the difference in the radius of the reference ellipsoids used for the GPS and for the OSU91A
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gravity model causes a displacement of 697.7 mm over the whole of Britain, so that the
absolute vertical datum correction for Newlyn appears to be very well determined indeed as
3.3+ 10.2 mm.

Site EastingNorthing EDINgS  EDINZI1 EDIN91

(km) (km) raw trend residual

Newlyn 14637 29.00 540 557 704.9 701.0 39

Portsmouth 46291 10127 = 974 435 709.4 7212 -118
Dover 631.90 140.80 1240 530 745.6 732.3 133 -

Sheerness  591.10 174.47 1204 464 730.2 7417 -115

Lowerstoft 654.38 292.50 1385 465 782.1 774.7 7.4

Aberdeen 395.59 806.75 1099 . 974 917.2 918.5 -1.3

Table 1: Geoid height difference EDIN - GPS/MSL (mm)
The trend removed from EDINO1 is [692.88 + 0.2797 Northing (km)] mm. The Nottingham
Ejnive;sity GPS/MSL estimate of geoid height was supplied in a letter from A H Dodson
1995).

While the magnitude of the north-south slope can be modified by changes in the data
preprocessing (eg not removing the trend in the residual free air anomalies, varying the
marginal taper, padding out the data), all give qualitatively similar results. The simple detrend
withl no padding or tapering adopted for EDIN91 gives (as expected) the most consistent
result.

Conclusion derived from these results must remain provisional: the task of computing the new
geoid EDIN95 has begun and significant long wavelength errors in the earlier gravity data
adjustment of North Sea data has been detected. It is anticipated that this may mofify the
EDIN91 geoid at longwavelength, possibly even removing the bias and trend with respect to
free air anomalies computed from OSU91A. However, the central point is likely to remain: a
local and relative gravimetric geoid can now be readily computed with verified centimetric
accuracy, and the prospect of determining the absolute datum with a similar accuracy now
appears in sight.
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Abstract

The last estimate of the Italian quasigeoid, ITALGEQO95, has been
accomplished during the first half of 1995.

This new computation has been based on a revised data set of gravity
covering the area 36° < ¢ <47°, 6°< A < 19°and an implemented DTM,
having a grid mesh of nearly 250 m. The method used to get the estimate is
the remove-restore technique (with some minor modifications) plus Fast
Collocation which allows to obtain the solution over the entire area in one
step only.

The final product is the estimate of § over a regular grid of 3'x3'in the zone
36°<p<47°, 6°<A<19°

This quasigeoid has been tested with GPS/leveling measurements which
showed a good agreement with it; strong improvements have been reached
both with respect to the pure geopotential model (OSU914) and the
previous Italian geoid (ITALGEO90).

1. Introduction

A new detailed estimate of the quasigeoid has been computed over an area covering Italy
and surrounding seas. The aim of this computation is to provide an updated and reliable
reference surface to be used in connection with GPS measurements, altimetric
observations and for geophysical investigation in the central Mediterranean area. This
quasigeoid, named ITALGEO95, has been based on a new validated gravity data set
covering the area 36° <@ <47°, 6° <A <19° and on a DTM which is, on each side,
two degrees larger than the area containing gravity. The estimation technique is the usual

remove-restore method, while the computation of {, from Ag, is based on Fast

Collocation (Bottoni and Barzaghi, 1993) which allowed the estimate of C, in one step

only. The result is a quasigeoid grid in 36° < @ < 47°, 6° <A < 19° with a grid mesh of
3'x3'. The ITALGEQ95 estimate follows a previous geoid computation on the same area
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which was carried out in 1989, the ITALGEQ90 (Benciolini et al., 1991). Several
improvements have been introduced with respect to it. Gravity and DTM data bases used
in ITALGEQ90 were mainly based on Italian data and practically no integration with
other data sources was performed. This led to an estimate which was reliable on land
areas, where data were present. Another step forward has been done from the
methodological point of view. ITALGEO90 was derived via remove-restore technique

and collocation. Due to collocation computational limits, the N, estimate was obtained
in eleven different blocks which partially overlapped. These local solutions were then
merged together to get a global regular grid of 7.5'x7.5' in the area 35.9583 < ¢ <
473333, 6.4523 < A < 518.9525; the global geopotential model IFE88 was used to fill in

gaps in the areas were no JV, was provided (i.e. on the seas surrounding Italy and on
Corse, since the eleven zones cover the peninsular part of Italy and its two main islands,
Sicily and Sardinia).

Both merging procedure and lack of data on sea led to discontinuities in the final
estimate which reflected in a quite poor agreement with GPS/leveling data, especially in
the south. The procedure adopted in ITALGEQ95, based on Fast Collocation together
with the new implemeted data base of gradity and DTM, tried to overcame exactly this
fragmentation problems in order to get a homogeneous, and reliable estimate both on
land and on marine areas.

Finally, another ‘relevant difference’ with respect to ITALGEOS0 is the global
geopotential model used in the remove-restore procedure. In ITALGEO9S5 the more
recent OSU91A model was assumed as a reference field in order to remove and restove
the long wavelength components of gravity and geoid.

The comparisons of ITALGEQ95 with the available GPS/leveling data, distributed quite
homogeneously over the entire estimation area, gave good results, which sharply
improve the ITALGEQS0 performances, especially where poor results were present, i.e.
in the southern part of Italy.

2. Data acquisition and preparation
Gravity data

In the area
36°<p<47° 6°<A<L19°

all the available free air gravity anomalies were considered and merged together to
ensure a proper coverage, suitable for the 3'x3' geoid computation grid. Data were
collected from:

o the Italian gravity data base, the same used in ITALGEQ90 (Carrozzo et al., 1982;
Benciolini et al., 1991). These are mainly land data and cover quite densely the
peninsular part of Italy, Sicily and Sardinia. This data base consists of 240489 gravity
stations;
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« Morelli's gravity maps over the Adriatic and Tyrrhenian Seas (Morelli, 1970; Morelli
et al., 1975a; Morelli et al., 1975b). These are mean gravity anomaly values on a 5'x5'
grid coming from a digitalization performed by prof. D. Arabelos. These data showed
a gap in the central Tyrrhenian part which has been filled in at DIIAR digitizing the
Morelli's map on this area. The total number of data coming from this file 1s 20344;

« BGI point gravity anomaly data mainly on land areas on the nothern border of Italy
plus data covering the Corsica Island. From this source 35411 gravity stations were
collected.

Since gravity anomalies listed above refer originally to different normal gravity field, the
first step was to reduce all this data the same normal field, i.e. to the GRS80 normal
gravity. Further more, data were also reduced by selecting those closer to the center of a
1'x1' grid over to the computation area. In this way, from the original 296244 gravity

observations, a smaller data base of 105695 Ag values was extracted. This has been
done mainly to homogenize the distribution of gravity data which in some areas is
uselessly dense. Further more a gravity data base which is nearly 1'x1" is for sure suitable
for producing a 3'x3' geoid grid. It must also be remarked that on some part of the sea
we have data with a 5'x5' spacing, (i.e. those coming from Morelli's map digitalization).
This however is not so troublesome because gravity on sea is much more regular than on
land, so that the interpolation procedure from 5'x5' to a 3'x3' grid (the one used in Fast
Collocation) can be accomplished quite reliably.

The coverage of the reduced data set is shown in Fig. 1. It can be immediately seen that a
large data gap is present over the ex Yugoslavia region. This deficiency could have
coused problems in the north-east corner of the prediction grid and on the Adratic sea
too. However, since the correlation length of residual gravity is of the order of 15' (see
Fig. 2), no relevant effects are to be expected on the remaing part of the estimation grid.

DTM

In order to obtain a smoothed gravity field to be input in the collocation procedure,
gravity data must be reduced both for the geopotential model and terrain effect. To
compute properly the terrain effect, a detailed DTM model has been prepared over the
area

34°<p <49°  4°<A<21°

As mentioned before, the area considered for DTM is two degree larger than the area

containing Ag. This has to do with the terrain effect computation which must be carried
out taking into account large window of DTM data for each gravity station point. Many
different DTMs were merged together to form a unique homogeneous height data base
(where homogeneity refers to data spacing, not to precision). The different data sources
are listed below, with their main characteristcs.

o Italian DTM, covering mainly land areas. Data are on a regular geographical grid
with 7.5"x10" spacing (Carrozzo et al., 1982).
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« Morelli bathymetry on sea; these are grided data 5'x7.5' (Morelli et al., 1975b).
« Austrian DTM covering whole Austria with resolution 11.25"x18.75".

o French DTM in the Alps area (42.75° < ¢ < 48, 5°< A < 8°) and over Corsica with
resolution 9"x6".

o Swiss DTM (RIMINI) with grid spacing of 250 m on a regular (x,y) grd in the
national Swiss map projection system.

¢ German DTM in the strip 47° < ¢ < 48°, 7° < A < 13° having resolution 30"x50".

o ETOPOS5U in the remaining parts of the considered area. This global data base has
grid mesh of 5' both in latitude and in longitude.

Since these DTM models have different spacings the merging procedure was designed to
reduce all them to a common grid mesh, namely the one of the Italian DTM. This has
been done by simple bilinear interpolation without taking into account the different
accurancy of the various DTM. The bilinear interpolation was applied to the various
height data bases but not to the Italian DTM which maintained the original values. The
information stored in the final global DTM are the heights in meters coupled with a code
which relates to the DTM sources used to compute those values.

This data base is stored in binary form and contains 7202 x 6122 heights (and codes) on
a regular geographical grid of 7.5"x10". '

3. Quasigeoid computation method and results

The remove-restore procedure and Fast Collocation (Barzaghi et al., 1992) were used to
get the quasigeoid estimate. The basic scheme of this method has been applied following
these steps:

(2) removal of the long wavelength component of the gravity data using the global

geopotential model OSU91A in the measuring points (.4, ,h,.)
Ag()(@, s;"'fshi) - AgM({ohﬁ'l:ht)’

(b) Residual Terrain Effect (RTE) computation and subtraction of such an effect to
produce residual gravity values

A (@1, 2. 1) = Agol i, Ao ) — Bgag (01, 41, B) — 8ot @1, 2 1)

(¢) Outliers rejection on Ag,,(qa,-,l,-,lﬂi,-);
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(d) gridding of Ag,.(w,}u,h) to produce a 3'x3' regular grid of Ag,(qo?,/l?) over the

area 36°< < 47°,6°<A<19° ( (@?A?) longitude and latitude of grid knots),

(¢) Fast Collocation computation of Agr,.(;p?,fj ,0),@,(@?,1?,1000@ from

Agf’ (#9?;6;) to evaluate ﬁg,. (@?,lcj);

. | 5 Ar
(f) computation of Ag,(¢;,4;,0) from Ag (@, 4. k) and ;g (¢’_(i}’lcjf);

(g) gridding of Ag,,(gp,—, Z,-,O) to produce Agr(go?,ﬁ.(j,O) on the 3'x3' grid;

(h) estimation, via Fast Collocation, of ﬁ(@?,&?,o) and ﬁg,.(gaf,-},l?,o) on the 3'x3'
gnd;

(i) evaluation of %(@?A(j) via fundamental equation of geodesy

7 7%, 4,0
L(sf5) - a6 e 5.0) -2 DL

R = mean Earth radius;

~

() computation of f;.(qa?,/l(},h?) using ﬁ(?ﬂ?,ﬂ?ﬁ) and %(qﬂ’?ﬂ?) ;

(m) restore of the model and of the residual terrain effect on the (qp?,;t(;,h?) 3
prediction grid, to get

Ao§.16.18)= 6165, 2518 ) + 6 o 15 F) + 1l o . 25.457).
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Some comments are in order to clarify the described procedure.

The global geopotential model OSU91A gives a good description of the geopotential
field in this area, apart from the Corsica Island where it appears to be completely flat,
both in Ag and in {. This causes a mismodelling which reflects into the residual values
derived at step (a). To overcome this model deficiency, we decided to remove and then
restore the total effect of the reference Corsican topography (the same reference heights
used for RTE computation described here after) in all the points contained in the window
40° < < 44°,7° < A < 11° centered on Corsica Island. In such a way the low frequency
component of geopotential field of Corsica, which is not present in the OSU91A model,
is assumed to be connected to the reference DTM used for RTE. -
The Residual Terrain Effect was computed with respect to a reference DTM which has
been related statistically to the global geopotential model previously removed.

In order to do that, we considered a subset of 8577 points, homogeneously distributed,
of the gravity data base derived at step (a). Then, we reduced the data of the Residual
Terrain Effect computing it with various reference height fields. These different reference
DTMSs were obtained via moving average from the detailed DTM; the best coupling
between model and residual terrain computation was reached with the smoothed DTM
derived from a moving average of 20’ window size, sampled at 5'x5'. This means that
using the OSU91A geopotential model and such a reference height data base, we
obtained the minimum mean and the minimum variance of the residual gravity values

Ag;.
Step (d) through step (f) were applied to verify the interaction between gridding

procedure with height information in Ag,(¢;,4;,5).
The statistical analysis Ag,(¢;,4;,4) (step (b)) and Ag,(@;,4;,0) (step () showed that
no significant correlation with the height is present in Ag.{@;, A4;,k). In gridding the

gravity data to determine Ag,.(qo?,i?,o) on a regular grid, we had to face the problem

due to the lack of data over ex Yugoslavia. As it is quite natural, we set

Ag,.(qa?, /15-;,0) =0 in that region, since no information are provided there. In principle,
using Fast Collocation, step (h), (i) and (I) could be condensed in one step only, i.e.

compute f;on sparse (qa, A,h) points from gridded data (g). However, this is so CPU
time consuming that the computation we did should have lasted one month: steps (h) to
(I) are much more efficient from the computational point of view even though this is an
approximate procedure (differences between the rigorous and the approximate approach
on some test points amount to a maximum of few centimetres).

The computer program used for RTE (this effect has been computed using a window of
120 km around each point) and gridding computations are TC and GEOGRID of the
GRAVSOFT package (Forsberg, 1994; Tscherning, 1994) while global geopotential

model functionals Ag,, and ;s have been evaluated using ¥388 program by prof. Rapp
(1994).
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We finally remark that the hj(-} of the grid in (I) was obtained via bilinear interpolation

from the four neighbouring points of the detailed DTM. The numerical results of the
estimation procedure detailed above are summarized in Table 1.

Ago | Ago—Agu| Ag, +(c) | Ag +(g) . ¢
(mgal) (mgal) | (mgal) (m) (m)
mgal)
n 105695 105695 105308 52188 - 57681 57681
11.87 -7.57 -3.66 0.24 0.07 44 24
62.86 33.47 17.91 14.57 0.59 5.02
Max 348.82 309.67 117.36 111.07 2.33 54.96
min -578.43 -631.00 -197.34 -118.28 -1.94 25.37

Table 1;: Remove-restore statistics.

The empirical and model covariance functions used in each Fast Collocation estimation
are plotted in Fig. 2; the final resulting quasigeod is shown in Fig. 3.

4. Comparisons with GPS/leveling data

Many reliable GPS campaigns have been carried out in the last years in Italy. Two
geotraverses have been measured: one moving from the Brennero Pass along the Adriatic
coasts to Noto in Sicily (this is the Italian part of the European geotraverse); the second
starts in Rome (Monte Mario) and reaches Reggio Calabria in front of Sicily (Tyrrhenic
geotraverse) (Birardi, 1993).

During the last two years, the Istituto Geografico Militare Italiano (IGMI) started a GPS
measurement campaign which is planned to cover densely the Italian territory (Surace,
1993). Furthermore, in the framework of the TYRGEONET project (Achilli et al,
1991), GPS measurements have been made in several part of Italy.

Finally, we took into account data over Sardinia (Asili et al., 1995), so that the estimated
quasigeoid has been tested over the entire Italian territory.

All these GPS stations have been connected to the Italian national height system through
spirit leveling so that an estimation of N in these points is possible.

The statistics of the differences between Ngps and ¢ (ITALGEQ9S5), Ngpg and

N(ITALGEOQ90), Ngps and N (OSU91A) are presented in Table 2, while the
distribution of GPS stations is described in Fig. 4.
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E (m) o (m) Max (m) min (m)
Adsiatic | VP~ ¢(95) 0.76 0.54 1.81 -0.41
geotraverse | Ngps — N(90) 0.06 0.75 0.96 -1.93
n=56 | Ngps— N(OSU914) 0.45 0.63 2.43 -0.76
Ngpg— (95
Tyrrhenic | VOPS {95) 0.16 0.11 0.51 0.01
geotraverse | Ngpg — N(90) -0.48 0.38 0.25 -1.57
n=28 | Nopo— N(OSUS14)| 003 0.37 0.90 L0.54
Ngps— (95 ] ) ]
v | Nops—499) 0.90 0.18 0.54 1.19
(South) | Ngps— N(90) -1.56 0.73 -0.46 2.99
n=29 | N N(osU9L4)|  -0.66 0.47 0.78 -1.65
v |Yors—4099) -0.29 0.08 -0.15 -0.41
(North) | Ngps — N(90) -0.83 0.15 -0.54 -1.14
n=13 | nooo- N(osUoLg)|  -0.79 0.43 -0.30 -1.63
~ 495 _ ) ]
Tyrgeonet | V5?8 493) 0.91 0.12 0.68 1.06
(South) | Ngps— N(90) -1.19 0.44 -0.18 -1.78
n=12 ) Ngps-N(OSU914) | -0.94 0.36 -0.42 -1.46
Ngpg— (95 - ]
Tyrgeonet | VOPS &{95) 0.36 0.20 0.08 0.75
(North) | Ngps — N(90) -0.93 0.28 -0.30 -1.28
=20 | Ngpg—N(OSUS14)|  -0.63 0.45 0.09 2148
Nepg—£{95 ; ) ]
Sardinia | Nops—499) 1.13 0.18 0.61 1.55
n=29 | Ngps— N(90) -1.25 0.37 -0.10 -1.76
Ngps - N(OSU914) -0.74 0.30 -0.25 -1.40

Table 2: Ngps versus geopotential models.

The statistics show that a good fit between ITALGEQ95 and GPS/leveling has been
reached. The standard deviations of the differences are quite homogeneous all over Italy
and improve in each case both with respect to OSU91A geoid (as expected) and
ITALGEQS0.

However, the result of the comparison with the Adriatic geotraverse is quite poor and
this reveals the existence of some unsolved problems.
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Firstly, it must be taken into account that we compared a quasigeoid and GPS/leveling
data which are geoid heights. This can induce distortions especially in areas where a
relevant topography is present. Then, it must be mentioned that this is the oldest GPS
campaign in Italy and that those data are not so reliable as the remaining GPS
measurements. In addition to the previous comments, it is to stress that probably also the
geopotential estimation procedure can give problems in areas where a rough geopotential
field is present. Infact, a closer inspection of the plot of the differences along the
geotraverse (see Fig. 5.) allows to identify two main "domains" which are homogeneous.
If we consider separately the sets of differences from point (A) to point (B) and from
point (C) to the end, we have statistics which are close to the ones in Tab. 2; in fact from
(A) to (B) we have 6=22 cm and from (C) to the end 6=20 cm. We think that this
behaviour can be explained taking into account the particular feature of the geopotential
field along this geotraverse.

From the northernmost point to point (A) we have a strong geoid variation, which
amounts to 13 m in 250 km; then the geotraverse proceeds to south nearly along an
isoline of the quasigeoid to point (B). From point (B) to point (C) we again have a
strong field variation, 4 m in 100 km.

Finally, in the last part of the geotraverse, we are still along a contour line of the
quasigeoid and consequently we have a good fit between ITALGEQO95 and GPS/leveling
data. ‘

So, the critical points along the geotraverse are connected to strong geoid variations; this
probably has to do with global geopotential model distortions occuring in such areas
which the remove-restore method cannot compensate properly.

5, Conclusions

The new Italian quasigeoid, computed via remove - restore technique and
Fast Collocation, provided a reliable geopotential field estimation over the area
36° < @ £ 47°, 6° < A < 19° This estimate has been tested via comparisons with
GPS/leveling measurements which cover Italy quite homogeneously.

The mean value of the standard deviations is of 15 c¢m if the Adriatic geotraverse is
excluded. This data set seems to indicate that mismodellings are still present; further
researches are needed to clarify the reasons of such a high discrepancy (6=54 cm)
between the quasigeoid and these GPS/leveling measurements. Furthermore, in the near
future, comparisons will be carried out with altimetry to test the effectiveness of the
quasigeoid in the seas surrounding Italy. ' '
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Gravimetric Geoid for Poland Area Using Spherical FFT

Adam Lyszkowicz
Department of Planetary Geodesy, Space Research Centre
Bartycka 18A, 00-716 Warsaw, Poland

Rene Forsberg
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Rentemestervej 8, DK-2400 Copenhagen NV, Denmark

1. Introduction

In 1961 an astro-gravimetric determination of the geoid for the area of Poland was performed
by Bokun at the Institute of Geodesy and Cartography in Warsaw (Bokun,1961). The
densification of Polish horizontal network enabled preparation second (in 1970) and third (in
1978) version of the astro-gravimetric geoid. The resolution of this astro-gravimetric solution is
about 20 km and the relative accuracy was estimated to = 65 cm.

At present demands on gravity field determination have increased, mainly through the advent
of the Global Positioning System, providing three-dimensional relative positioning with cm
accuracy, even over longer distances. In order to transform the purely geometrically defined
ellipsoidal heights from GPS into heights related to the earth's gravity field, that are needed by -
most users, it is necessary to know the corresponding height reference surface (geoid resp.
quasigeoid) with an accuracy comparable to that of GPS and levelling, which is in order of a few
cm/100 km resp. dm/1000 km.

In order to achieve the geoid at this level of accuracy, high resolution point or mean gravity field
data with an average spacing resp. block size « 10 km is needed, as e.g. gravity data and
topographic information. The first gravimetric geoid for the territory of Poland computed by the
collocation-integral method (Lyszkowicz,1993) comprised about 6000 mean free-air gravity
anomalies. In second gravimetric solution (Eyszkowicz and Denker,1994) new gravity data (about
8000 mean anomaties) and topographic information from Poland territory were included. In this
paper a new attempt is made towards a detail geoid and quasigeoid determinations for the Poland
territory. For this purpose, high resolution mean gravity data with the spacing 2 kim x 2 km have
been made available for the whole area of Poland. The computations were carried out using
integral formulas evaluated by spherical Fast Fourier Transforms (FFT). Although grawity field
variation can be modelled with the desire accuracy from sufficiently dense and accurate gravity
and topography data, the solution presented in the following is suffering from lacking gravity data
in some parts of neighbouring counties (Byelorussia) and the Baltic Sea.

The final results geoid and quasigeoid are presented in form of a contour line map, and also in

computer applicable form by FORTRAN subroutine in connection with an input grid file. The gnd
files contain geoid/quasigeoid heights for a grid with mesh size 1.5'x 3.0".
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2. Computational method

The computation of the new gravimetric geoid for Poland (geoid94) combining a geopotential
model (GM), mean free-air gravity anomalies Ag,, and heights H in a digital terrain model, was
based on the following formulas:

N =Ng, + N, + Ny (1)

Ag = Ag, - Aggy ~ Agy (2)

The GM part of Ag and N was obtained by the spherical harmonic representation of the
anomalous gravity field. .

The medium and high frequencies were obtained by Stokes' integral equation with terrain
corrected mean gravity anomalies on a 1.5' x 3' grid:

NAg = ‘;;Gf'ﬁAg S(y)do 3)

where S(¢)is Stokes' function and E is the area of integration. The two dimensional multi-band
Fast Fourier Transform (FFT) technique (Forsberg and Sideris, 1993) was used. which allows
the evaluation of the spherical Stokes integral without approximations, relating to flat-earth
postulate. Proper zero padding (100%) was applied to the gridded data to eliminate the effects of
circular convolution.

Since Stokes formula is valid for Ag on the geoid, all masses above it must be mathematically
shifted inside the geoid via terrain reduction. The computation of Ag,, accounts, for this shift
through a Helmert reduction, i.e. condensation of the topographic masses on the geoid. The term
N,, in equation (1) is called the indirect effect on the geoid and accounts for the change of
equipotential surfaces after a terrain reduction is applied to Ag. In flat areas these effects might
be negligible, but in the Polish mountains they may reach 15 cm. Helmert's condensation to first
order was used, and the geoid term was computed from heights on a 1.5' x 3.0" digital terrain
model using the following equations:

Bgm=e o *
N = _mGoH?
BT T )

where c is the classical terrain correction, G is Newton's gravitational constant; ¢ is the density
of the topographic masses, assumed constant.

154



In practice the free-air anomalies Ag,were obtained by gridding terrain - corrected Bouguer
anomalies, and applying the linear height term for restoring mean free-air anomalies i.¢. producing
mean Faye anomalies.

In Poland the national height system is based on normal heights and therefore a national " geoid"
should be a quasi-geoid rather than geoid. The classical dilemma in determining the "physical”
geoid height N is that a knowledge of the density of the topographic masses above the geoid is
required. The same problem occurs in the definition of the orthometric height. The basic
observable in geodetic levelling is the geopotential number C at a surface, with practical formulas
for orthometric and normal heights

C

Hyin = < * ©
Hebmert = 2 g + 0.0424 H
«_C C
=== ; )
y v, - 01543 H

where H,, , ., are the classical orthometric heights build on an assumption of a constant density
2.67 glem?, using Bouguer plates to estimate the mean gravity value inside the earth, and H* is
the normal height. It is simple at the above approximation level to convert between geoid and
quasigeoid. For a point P at the surface of topography equations (6) and (7) results in the simple
formula
- + 0.1967 H A
=N = By = H = T 2= ®

where Ag,is the Bouguer anomaly.
3. Used data

3.3. Geopotential model

One of the most important kinds of information for gravity field approximation today is a good
reference field supplied by a geopotential model. By subtracting the reference field information
from the observations, the prediction based on the residual observation is of improved accuracy.
This is particularly true for the fast Fourier transform method. From the numerical computation
point of view, it may reduce the leakage error caused by the existence of long wavelength parts
which cannot be resolved using only gravity data of limited extent.

For the determination of the long wavelength part of the earth's gravity field various models are

now available. From the existing OSU higher degree geopotential solution, we chose to use the
OSU%91A model (Rapp and Pavlis, 1990).
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3.2. Topographic data

For the computation of terrain reductions, 0.5’ x 0.5’ mean elevations elaborated in Department
of Planetary Geodesy (Lyszkowicz, 1994) are available for the area of Poland. Additionally 5'x
7.5' mean elevations are available for the territory of Czech Republic, Slovak Republic, Hungary,
Romania and Western Ukraine The mean 5' x 5' heights from ETOPO5 mode] were used for the
areas without any elevations. All elevations data have been carefully checked for gross errors by
visual check of plotted test contour line maps. From the existing data set a new 1.5'x 3.0' mean
elevation grid was created by bilinear interpolation for the territory 45° <¢ < 75” and 0° <2

<357,

Table 1. Description of gravity anomalies sources

Gravity Description Number | Normal Gravity Vertical | Horizontal
data gravity | reference | reference | reference

set system system system |

1 mean 5'x 7.5’ 1402 GRSBO IGSN71 Baltic S-JTSK
from Czech
and Slovak

2 Polish 78 401 Helmert Potsdam Baltic Borowa
terrestrial mean Gora
2x2 km

|| 3 mean 5'x 7.5 2770 Cassini IGSN71 ' Baltic ?

from Romania

4 mean and point | 27993 GRS80 IGSN71 DNN ED50
gravity data
from the
southern
Scandinavia

5 mean 5'x 5 2763 GRS80 IGSN71 DHHN ED50
from Germany i
and Austria

6 mean 5'x 7.5' 768 GRS80 Potsdam Baltic ?
from Western ‘ - : ‘
Ukraine

| 7 mean 5'x 7.5' 1147 Cassini Potsdam EOMA HD-72

from Hungary

8 mean 1'x 1' for 14 981 Helmert Potsdam Baltic Borowa
southern part Gora
of Baltic Sea _ B
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3.3. Gravity data

For the determination of gravimetric geoid or quasigeoid and gravimetric vertical deflections in
the Poland area, high resolution point free-air and mean gravity anomalies have been collected
in Department of Planetary Geodesy until October 1994 in the region 47° <¢ < 57° and 11° <
A < 26° from the following institutions:

1) Research Institute of Geodesy, Topography and Cartography, Prague
2) Institute of Geodesy and Cartography, Warsaw

3) Institute of Geodesy and Geophysics, Bucharest

4) National Survey and Cadastre, Geodetic Division, Copenhagen

5) Institute fiir Erdmessung, Hannover

6) Lviv Technical University, Faculty of Geodesy, Lviv

7) Institute of Geodesy, Cartography and Remote Sensing, Budapest

8) Department of Planetary Geodesy, Space Research Centre, Warsaw.

Gravity data anomalies given in table 1 are not uniform and several corrections were introduced.
In our study we introduced to the gravity anomalies the correction for the gravity formula
differences, the gravity system differences and the atmospheric corrections. Subtracting the
reference anomalies computed from the geopotential model OSU91A the residual anomalies were
calculated by

Agret = AgF + AgA + fc - Agref + Agfomula (9)

where Ag__is the reduced free-air anomaly, Ag, is the correction for the atmospheric effect,
tc is terrain correction, Ag, . is reference anomaly and A 8rormuta 'S COTrECtion for the gravity
formula differences.

4. Practical results

For the FFT computations the gravity data had to be gridded. This was done using a fast
collocation prediction procedure (KMS GEOGRID program) with an internal search algorithm
utilizing only 4 closest points in each quadrant around the prediction point. The reduced gravity
data (Fig. 1) were gridded in 1.5'x3.0' grid for the area 47° <@ < 57° and 11° <A < 26°,
using point data and mean values. Table 2 gives the statistics about the source, residual and
gridded residual anomalies in the considered area. The gravimetric geoid computation was
performed in one step for the entire area yielding a 300 x 400 grid for FFT excluding zero-
padding.

Table 2. Statistics of the source, residual and gridded (1.5' x 3.0) residual anomalies (in mGal)

|| anomalies number mean stand. min. max.
dev.

source 130226 1.07 19.27 -72.67 159.15
residual 130226 -0.20 982 -86.67 102.82
gridded res. 120000 -0.07 12.55 -85.48 9517
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Figure 1. Reduced free-air gravity anomalies (contour interval 10 mGal)

The geoid indirect effect was computed using equation (5) with the grid mesh 1.5' x 3.0". The
indirect geoid effect is significant only in a few mountainous areas where it reaches values from
one to a few decimeters. On the remaining territory it is on the level of a few millimetres. Final
geoid undulations (solution #1) were computed by adding the contributions from the geopotential
model OSU91A from the gravity data and from the topography. Then computed geoid was
converted to quasigeoid (solution #2), using the Bouguer anomaly approximation. The geoid -
quasigeold corrections are signtficant only in few mountamous areas where they attain values
from one to few decimeters. Table 3 gives the statistics of the reference, residual and final
geoid/quasigeoid solutions.

The final result is presented in a form of contour map (Fig. 2) and also in digital form by the
computed geoid/quasigeoid heights for a regular grid with a mesh size 1.5' x 3.0". Totally, 120 000
geoid/quasigeoid heights are stored in grd files, from which geoid/quasigeoid heights and
deflections of the vertical can be computed for stations with given latitude and longitude using
subroutine GEOIP.
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Table 3. Statistics of the reference, residual (computed by FFT), and final geoid undulations

(in meters)

geoid mean stand. min. max.
dev.
reference 3598 7.14 21.04 51.08
residual -0.05 0.45 -3.40 1.21
final #1 35.93 721 21.24 51.54
final #2 35.91 7.19 21.24 50.77

Figure 2. Final spherical FFT geoid solution, reference system GRS80
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Table 4. Comparison of GPS/levelling results to gravimetric quasigeoidal heights (in meters).

pts mean stand. dev. min. max.
before fit 13 -0.31 0.15 -0.49 0.01
after 4-par fit 13 0.00 0.06 -0.11 0.11

To evaluate the absolute accuracy of the quasigeoid , data from EUREF-POL (Zielinski et al.,
1994) and Baltic Sea Level Project (Zdunek,1994) GPS networks together with levelling data
were used to derive the geoidal undulations for comparison with the gravimetric quasigeoidal
heights. The computed ellipsoidal heigths were referred to WGS84 ellipsoid and their standard
dewviations do not exceed + 3 em.

All GPS stations have been connected to the national levelling network, which consists of
normal heigths. The connection of the GPS stations to the levelling network has been carried out
by spirit levelling to a nearby benchmark. The accuracy of the levelling heigths may be estimated
to about 2...6 cm depending on the type of connection measurements. So we can expect an
accuracy of the GPS derived quasigeoid heigths of the order of £ 6 cm.

To minimize the long wavelength errors, the systematic datum differences between the
gravimetric geoid and the GPS/levelling data were removed by the following four parameter
transformation equation:

N’ =N + b, + bgcosgpcosh + bcospsink + b,sing (10)

where b is the shift parameter between the vertical datum implied by the GPS/levelling data and
the gravimetric datum, and b,, &, and b, are the three translation parameters in X, y, z axes
between the coordinate system implied by the GPS data and the one implied by the gravimetric
data.

The statistics of the absolute differences between the two types of quasigeoidal heights are
summarized in table 4. The comparison of the gravimetric solution with GPS/levelling derived
quasigeoid heights shows bias -31 c¢m and standard deviation of + 15 cm. The use of the four
parameter datum shift fit eliminates the possible tilt of the gravimetric geoid as well, yielding geoid
fit at only £ 6 cm which is consistent with the accuracy of GPS/levelling derived heights.
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ABSTRACT

A new high precision gravimetric determination of the geoid of the Iberian Peninsula
has been made, using the following data types: a) a global geopotential model, namely
the OSU91A spherical harmonic coefficients set, b) a set of 186813 point free air gravity
anomalies covering the Iberian Peninsula and surrounding regions, including recent
new data, and c) a 1000x1000 meters digital terrain model for Spain and the ETOPO5U
for the rest of the area.

The method used for the computations was the Stokes' integral in convolution form. The
input data were gridded gravity anomalies. To evaluate the integral, the Fast Fourier
Transform and Fast Hartley Transform techniques were applied. Discrete spectra of the
kernel function is used. 100 % zero padding was appended around the signal matrix to
avoid circular convolution effects. The terrain correction was applied io the data and
the corresponding indirect effect was taken into account.

The geoid computed has been compared to geoid undulations obtained by GPS/Levelling,
and a precision of 1.0 ppm has been obtained. The results, corresponding to the 1D-FFT
solution, in the GRS80 system, are presented in form of contour maps.

1. INTRODUCTION

Geoid determination is a major problem of Physical Geodesy. Today the whole international geodetic
and geophysical community is interested in this task and a great number of international workshops and
symposiums on this topic are held. Recently into the International Association of Geodesy, the
International Geoid Service has been created. The use of geoid related data, in particular its undulation,
is widespread in all branches of the Geodesy and it is natural to find it in other Earth Sciences as in
Geophysics, Oceanography etc., as well as in Civil Engineering.

The computation of the geoid over large areas is possible in the framework of international
collaboration. In the Iberian Peninsula the collaboration between the “Instituto de Astronomia y
Geodesia (UCM-CSIC)” at Madrid, the Spanish “Instituto Geografico Nacional” and the “Instituto
Portugues de Cartografia e Cadastro”, in the frame of the IBERGEQ Project, has made possible the
accomplishment of the Iberian geoid. This collaboration has provided the most recent and precise
gravimetric data and a modern digital terrain model.

The first determination of a preliminary geoid in a small zone in the center of Spain was made in 1991,
using the least squares collocation (LSC) method (Sevilla et al., 1991a), and the first gravimetric geoid
of Portugal, also with LSC, was computed in 1992 (Sevilla and Rodriguez-Velasco, 1993). The geoid of
the center of Spain was refined in 1993 taking into account terrain effects (Gil et al., 1993). The first
determination of a gravimetric geoid in the whole Iberian Peninsula was made last year (Sevilla, 1994).

Now, a new and detailed geoid has been computed in the Iberian Peninsula and surrounding regions,
between the limits 35<@<45 for latitudes and -10.5<h<5.5 for longitudes, in a grid with mesh sides of
717 and 2.67 kilometres in latitudes and longitudes direction, respectively. The geoid solution was
computed based on the following data types: A) the geopotential model OSU91A spherical harmonic
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coefficients set (Rapp et al., 1991), complete to degree and order 360, B) a set of 186813 point free-air
gravity anomalies covering the Iberian Peninsula and the surrounding regions, the gravity data being
corrected for atmospheric and terrain effects, and C) a 1000x1000 meters digital terrain model for Spain
and the ETOPOSU revised for the rest of the area.

All data has been tested and validated. The LSC method has been applied systematically to predict free
air gravity anomalies with validation purposes, using the spherical harmonic coefficient set OSU91A 1o
reduce anomalies. Gross errors have been detected in 2% of the marine data and in 1% of the land data.
The terrain effects have been taken into account by means of the remove-restore technique, and the
Helmert’s second condensation reduction has been used to reduce gravity anomalies. The indirect effect
on the geoid has been considered in consequence.

The method used in the computations of the contribution of the local gravity data to the geoid was
Stokes' integral in convolution form. The input data were fully reduced gridded gravity anomalies. To
evaluate the Stokes’ formula, three techniques were used: the first is the planar Fast Hartley Transform
(FHT) (Tziavos, 1993a,b); the second is the spherical miltiband Fast Fourier Transform technique with
2D discrete FFT (Forsberg and Sideris, 1993) and the third is the spherical 1D-FFT technique
(Haagmans et al., 1993), which allows the evaluation of the discrete spherical Stokes’ integral without
any approximation, parallel by parallel. In all computations discrete spectra of the kernel function is
used. 100 % zero-padding was appended around the signal matrix in order to avoid circular convolution
effects.

The final geoid was obtained by adding the contribution of the model and the contribution of the
reduced gravity anomalies as well as the indirect effect. The various results have been analysed and
compared. The definitive results, referred to the GRS80 system, are presented in a map covering the
region contoured at 50 cm intervals. This map is constructed from the 262144 predicted geoid
undulations. The geoidal height mean square error obtained by comparison with GPS undulations is
almost everywhere less than 1 ppm.

2. GRAVITY ANOMALIES DATA BANK

A number of 186813 point free-air gravity anomalies (1 18423 marine and 68390 land data) in the area
(35<p<45, -10.5<A<5.5) were used in the geoid computation. This data came from the sources shown in
Table 1. The accuracy of these data ranges from 0.1 to 10 miligals due to the different sources used in
the collection of initial data.

As the different files referred to different datums, in a first step datum transformations were performed
to standardize all the data. The standardized data are referred to the Geodetic Reference System 1980
(Moritz, 1984) for theoretic gravity and to the International Gravity Standardization Net for the
measured gravity. For details about the formulae used, see (Sevilla et al.,1991b).

Table 1. Source data bank

File Name Points Source
Iberired.dat 136 | IGN First order gravity network
Spainiag.dat 27589 | IAG-IGN Gravity survey of Spain
Spainign.dat 904 | IGN Recent gravity data of Spain
Spainest.dat 2049 | IGN Data of Gibraltar Strait
Portugal.dat 4327 | IPCC Data from Portugal
Spaingmg.dat 4933 | GEOMED Marine gravity anomalies
Iberdmam.dat 31494 | DMA Marine data from DMA.
Iberdmat.dat 32859 | DMA Land data from DMA
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File Name Points Source

Iberncaa.dat 81996 | NOAA Marine data from NOAA

Iberia.dat 186813 | The whole set of gravity data

IGN: Instituto Geografico Nacional (Spain), IAG: Instituto de Astronomia y Geodesia
(Madrid), IPCC: Instituto Portugues de Cartografia e Cadastro (Pormugal), GEOMED:
International GEOMED Group (Milan), DMA: Defense Mapping Agency (USA),
NOAA: National Oceanic and Atmospheric Administration (USA)
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Figure 1. Geographical distribution of data points

To remove the atmospheric effect from the gravity anomalies a correction has been added to the free
air gravity anomalies. This correction is given by the polynomial (Pavlis, 1991)

8¢, = 08658 —9.727x107° H+3482x107 H”  (mga)

where H is the orthometric height of the gravity station in meters. This function represents the tabulated
values of JAG, 1971 (Moritz, 1984). The minimum and maximum values of the atmospheric correction
are 0.61 and 0.87 mgals respectively.

All data sets have been checked carefully to remove repeated points, and validated for gross errors by
applying different procedures (section 4). Figure 1 shows the geographical distribution of the available
gravity data and Figure 2 shows a map of free air gravity anomalies contoured at 50 mgal interval.
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Figure. 2. Free air anomaly isolines contoured at 50 mgal intervals

3. GEOPOTENTIAL MODEL

The spherical harmonic representation of the Earth's gravity field W is (Heiskanen and Moritz 1967)

W(r,9,\) = g {1+ E(E)" 'Z(Cm cosmh+ S, sinmA) P, (cos® )} +P

n=1 m=0
where: r, 8, A are the polar coordinates (geocentric radius, colatitude and longitude, respectively) of the
point where W is to be determined, GM is the geocentric gravitational constant, @ is the semi major axis
of the reference ellipsoid, P,.(cos) are the fully normalized associated Legendre functions of the first
kind, C,,, S, are the fully normalized spherical harmonics coefficients of the Earth's gravitational field
and @ is the potential of the centrifugal force, ® = (1/2) 'r’sin @, ® being the angular velocity of the

Earth's rotation.
The potential of a rotational reference ellipsoid is represented by the expansion

Uu(r9) =§i—£{l+i(3)2"l’h (cosd )} +@

n=1 r

where M is the mass of the reference ellipsoid. The standard representation of the disturbing potential 15
given by

GM < ¢
Trd,N)=W-U= TE(%)” E(ACM.COSm?L +AS, sinmh) P, (cost )
n=2

m=0

where AC,, and AS,, are the differences between the coefficients of the geopotential and ellipsoid
potentials (the difference M-M"is assumed to be small) and M’ can be replaced by M.

Taking into account the boundary condition of the physical geodesy we get the following expansions:
for gravity anomalies

Ag(r, 0 ,A) = Gr]? Z(n - 1)(%)" Z(ACM cosmh+ AS, sinmA) P, (cos$ ) 1)
n=2 m=0

and, with the Bruns equation, for geoid undularion
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N(r® M= %i(i)" Y (AC,, cosmh + AS,,, sinmh) B, (cos® ) @)

n=2 m=0

where v is the normal gravity value at P(r,0.1). In practical works the index n runs up to the maximum
degree of the model. These formulae can be evaluated by various techniques (Tscherning et al.,1983).

The reduced anomalies Ag.q are obtained by substracting the model gravity anomalies Agu.g,
computed by, (1) from the observed gravity anomalies Agobs

Agred = Agobs - Ag mod (3)

These anomalies reflect the local characteristics of the area because the long wavelengths have been
eliminated. o

The geopotential model OSU91A (Rapp et al, 1991) complete to degree and order 360 has been used
to obtain the reduced free-air gravity anomalies (3) and the geoid model (2). This model fits well the
anomalous gravity field of the area (Sevilla, 1994) (see Table 2). Figure 3 shows a map of free air minus
model gravity anomalies contoured at 30 mgal interval. The residual anomalies and the geoid model
have been computed using the GEOCOL 10 program (Tscherning, 1995).

Table 2. Statistics of gravity data in the Iberian Peninsula area

Mean | St.Dev | Minimum | Maximum | Range
Latitude 39.63 2.94 35.000 45.000 10.000
Longitude -2.58 4.69 -10.500 5.500 16.000
Height -167.11 | 917.82 -4984.0 2950.1 8020.1
Free-air -1.32 40.93 -180.10 192.90 373.00
OSU91A 3.31 30.42 -114.72 89.67 204.39
Free air-OSU91A 4.63 2248 -116.32 173.66 | 289.98
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Figure 3. Free air minus model graviry anomalies contoured at 30 mgal interval
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4. GRAVITY DATA VALIDATION

The validation procedure, i.e. the way of rejecting data which lack a minimum level of guarantee and
reliability, is one of the main tasks when working with gravity anomalies. It is necessary to compare the
observed value to the predicted one, estimated by a powerful method.

A validation procedure has been applied using least squares collocation. The application of LSC
method requires a homogeneous and isotropic gravity field. The early studies in the Iberian Peninsula
area show that gravity field is not homogeneous (Sevilla 1994, Sevilla et al., 1992). The same
conclusion may be drawn from the mean and standard deviation values. For this reason it was decided to
subdivide the whole area in small blocks. The total area is divided in 2° x2° overlapping zones. In all
zones residual anomalies have been computed by removing the OSU91A. The data of each zone are
divided in two sets A and B which have no ‘common observations but the same distribution. From these
residual anomalies two empirical covariance functions have been computed separately for all zones.
These empirical functions have been used to cstimate the values of the parameters of a model covariance
function.

The choice of covariance functions for validation purposes is easy because collocation is used to
predict the same quantity of the gravity field which is held as data. The quality of the predicted
anomalies does not depend so much on the covariance function if the observed and predicted quantities
are of the same kind (Tscherning, 1983).

Let Agyeq be the predicted anomaly by using LSC from a set of values Ag.eq in a 2°x2° area. This value
is given by (Moritz, 1980)

Ag pred = CAg C-lAg red

where C,, is the covariance vector between observations Ag.q and predictions Agps and C is the sum of
the covariance matrix of the Agq quantities, and the variance-covariance matrix of the associated noise.
We consider homogencous and isotropic covariance functions. In the local areas with the reduced
anomalies empirical covariance functions have been computed. Then the parameters in a Tschemning-
Rapp model (Tscheming and Rapp, 1974) were estimated using the least squares iterative inversion
technique (Knudsen, 1987). Then we can compute the difference

Ag g — A& prea

The estimation of the mean square error for the difference Ag ~Agprea is obtained by
62 (Ag,; — A o) = Co— CaCCoy
C, being the variance of the gravity values.

A gross error is then detected if (Tscherning 1991)
) 5 T2
lAgrea‘ _“Agpred]> k[G (Agred _Agpred)+GAg]

where k is a constant generally having the value 3 and olAg is the estirnated variance of the observations.

Predictions have been done in the whole set B by using data of set A and reciprocally, for all areas. By
inspecting the results of a first calculation we applied iteratively the following criterion (Sevilla et
al.,1991ab). In normal zones, if |A ey - Agpred > 20 mgal the Agreq is rejected and a flag 1 is associated.
This criterion works in an iterative way, repetition of the occurrence being the reason for the final

decision about rejection.
As pointed by Tscherning (1983), it is difficult to establish whether a large discrepancy between
predicted and observed values is due to an error in the prediction (owing to a lack of data or strong local
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changes in the gravity field) or to an observation error. In our case, we used statistical resuits to stady
this problem, but the suspicious points with differences larger than twice the tolerance (20 mgal) were
eliminated (flag 1). This procedure has been applied by using the GRAVSOFT package (EMPCOV,
COVEIT and GEOCOL10 programs) (Tscherning et al., 1994). Gross errors have been detected in 2%
of the marine data and 1% of the land data.

The collocation method allows the data to be treated in any spatial disttibution. It is not necessary for
the data to be gridded or for their distribution to be continuous (gaps are tolerated) unlike the Stokes
method. Against these advantages also there are several disadvantages, the first one being the great
amount of computational time that the collocation method takes due to the need to solve a system of
linear equations with the same number of unknowns as the number of observation data. The method of
Least Squares Collocation is described in several books and papers (e.g. Krarup, 1969, Moritz 1980,
Sansd, 1980, Tscherning 1985). .

5. TOPOGRAPHIC MODEL. TERRAIN EFFECTS

A digital terrain model (MDT200) is available for Spain with spacing 200x200 m. This model was
provided by the Instituto Geogrdfico Nacional (Garcia et al. 1992). This model was generated by
digitization of level isolines and quoted points of cartographic series 1:200000; all data were corrected
geometrically and altimetrically and checked by geomorphologic and external control. It was
complemented by the ETOPOS5U (a global topographic model) in the areas outside the Spanish territory.
From these two models a new mode! covering the whole area with 1000x1000 meters spacing has been
produced. Thus it was possible to make the terrain reduction without finding faults in the data (Sevilla
and Rodriguez-Velasco, 1994a). Figure 4 shows the topography of the area.
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Figure 4. The Topography of the Iberian Peninsula. (UTM coordinates, zone 30)
The topography has been taken into account in geoid computation by means of the Helmert’s second
condensation reduction. This means that we need -to compute the- terrain correction and the indirect
effect on the geoid (Heiskanen and Moritz, 1967).

5.1. Terrain Correction

The classical terrain correction in planar coordinates and for constant density p is given by (Forsberg,
1984, 1994)

—h
Cp ZGPTT ] 2 : PZ 2% dudydz ¥
e [(xmx, ) 4 (y—ye) +(z— )
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where p is the constant density of the topographic masses, (xpyphp) are the coordinates of the
computation point and (x,y,z) are the coordinates of the integration points. The integral is extended over
the irregularities of the topographic mass body relative to a Bouguer plate passing through the
computation point.

This terrain correction is added to the reduced anomalies (3) in order to get fully reduced anomalies
according to Helmert's second condensation reduction. These anomalies are obtained by '

Ag = Agobs —Agmod +6Ag +c (5)

where Aggs is the free-air gravity anomaly corrected for atmospheric attraction, Aguea is the model
anomaly computed by (1), 8Ag is the indirect effect on gravity which, being very small, is neglected and
¢ is the classical terrain correction computed through (4). : .

The computation of the terrain correction has been done in all the individual data points by applying
the prism integration procedure implemented in the program TC of the GRAVSOTF package
(Tscherning et al., 1994). We have not used any program based on the FFT for computing the terrain
corrections, because FFT needs gridded data. Preliminary results of our data show that there are some
differences between the direct and the gridded corrections and we think the direct prism integration is
more accurate. The statistic of the terrain correction is shown in Table 3.

3.2. Indirect effect

The indirect effect of Helmert's second condensation reduction on the geoid, considering the first two
terms in planar approximation, is (Sideris, 1990)

N, =P

ot = (Xp,¥p)—

A

Gp th(x’y)_hs(x"’yp)dxdy
3
E

where s is the planar distance between the computation point (xpyp) and data point (x,y).
Given 2 MxN digital height grid on the plane, the corresponding discrete integral is

<G GpAxA o 1 kpArAy & R 1
,-,,d=—Tph2(xp,yp)+p——"h3(xp,yp>§fX;—%Y—yiﬁ;;h%x,y) ©

GY X=X Y=hN X=X Y=¥

2

The second term and the third term on the right-hand side of (6) are 2D discrete convolutions. Since
the summations in both the x and y directions are 1D convolutions, (6) can be evaluated by the 1D FFT
either row by row or column by column, yielding the indirect effects for all grid points. The 1D FFT
formula for evaluating (6) column by column along x is (Sideris and She, 1995)

G GpAxA 3 1
Ny :_ﬂyp hz(xp’yp)+“26,Y_yh3(_xp’YP)FJ_I{Z“FI{F}FJ{I}}“
Q)
GpAxAy ., X 1
_—QGY__FI {,ng’{F}FI {h3}}

where F; and F;” are the 1D Fourier transform operator and its inverse. The formula for the direction y
is similar.

For the computation of the indirect effect in the Tberian Peninsula, we have taken a 1601x1301 digital
height grid from the DTM 200, then we have computed the indirect effect for the geoid grid by bilinear
interpolation. To evaluate the formula (7) we have used the INDI program (Sideris, 1994). The statistic
of the indirect effect is shown in Table 3.
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Table 3. Statistics of terrain effects in the Iberian Peninsula area

Mean | St.Dev | Minimum | Maximum | Range

Terrain Correction 048 1.63 0 78.61 78.61
Indirect Effect -0.02 0.03 041 -0.41 041

6. GEOID COMPUTATION METHODS

Geoid undulations have been determined for the Iberian Peninsula using the classical remove-restore
technique. The predicted undulations are obtained by the formula

N=Nmod+Nind+Ngm

where N,,,; is the contribution of the spherical harmonic model OSU91A (2), Ny is the contribution of
a terrain reduction (7) and N, is the contribution of the terrestrial gravity field observations: free-air
anomalies after the removal the effect of the global geopotential model and the topography.

The method used in the computations of the contribution of the local gravity data to the geoid was the
Stokes' integral. For the sphere it is (Heiskanen and Moritz, 1987)

R
N, =—]))Ag(¢,V)S(y)do 8
o = Ty 1 220 S) ®
where R is the mean Earth radius,  is the normal gravity, ¢ is the sphere of integration, Ag is the gravity
anomalies reduced to the geoid and S(y) is the Stokes function given by

1
S(p) =7 -4- 614107~ (3= 6 In(r +1°), t = sin3

The input data were fully reduced gridded gravity anomalies (5). To evaluate the Stokes’ formula, three
techniques were used: The first one is the planar Fast Hartley Transform (FHT) (Bracewell, 1986; Li
and Sideris 1992: Tziavos, 1993a,b); the second one is the spherical multiband Fast Fourier Transform
technique with 2D discrete FFT (Forsberg and Sideris, 1993) and the third one is the spherical 1D-FFT
technique (Haagmans et al., 1993, Sideris and She, 1995), which allows the evaluation of the discrete
spherical Stokes’ integral without any approximation, parallel by parallel.

In order to reduce the spectral leakage due to the periodicity of the discrete transformation and the
effect of the circular convolution on our computations we extended the size of each gravity matrix by
256x256. This was done by appending zeros around the gravity anomalies, ie., a 100% zero padding
was used distributed in both parts. Also, we have used discrete spectra of the kernel function that is
more efficient than the analytical one in geoid calculations.

6.1. 1st Method: Planar FHT approximation

In planar approximation the Stokes formula (8) can be written as follows

i 2 -
Ngra(xp}yP)=En7'ITEJ‘Ag(x,y)[(x_xp) +(y_yp) ] szxdy
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where (xp,y») are the planar coordinates of the computation point, (x,y) are the actual point, y is the mean
value of the normal gravity and Ag are point gravity anomalies. This integral can be transformed in the
frequency domain (Tziavos, 1993a). Thus, Stokes' integral formula may be written as a 2D convolution
in the form

1
N3 =50 Ag(x,y)* 1y (x,¥)

where * is the convolution operator, Ag(xy) are the fully reduced anomalies (5). The kernel function
IM(x,y) is given by.

lN — (x'Z + y2)—1f2

Then the FFT technique can be applied for the computation of the geoid undulation. In the
computations the discrete form of Stokes formula is used. Thus we have

AxAy & 1
Ngra(xp,yp)=—2—m—§§;rﬁg(x,y)

were Ax, Ay are the grid spacings in x and y directions and s is the planar distance between the
computation point (xs,yp) and the data point (x.y). This equation is a two-dimensional convolution and
can be evaluated be the 2D-DFT (Schwarz et al., 1990) as follows

AxA 1
I‘NTgm(x}:"y.P)= yF_l{F{;}F{Ag}}

2y

The singularity in the origin (x=0,y=0} can be avoided evaluating separately the effect at the
computation point as

 AxAy

ON(xp,¥p) z—;\/—;—'Ag(xp,yp) 9

To evaluate the convolution, instead the FFT, we have used the Fast Hartley Transform (FHT). This is
a real transform and its spectrum is real, so with the FHT we can save half of the computer memory and
also we spend less computer execution time (Tziavos, 1993a,b). The use of the FHT is made in just the
same way as the FFT if the data length is an integer power of 2 (Li and Sideris, 1992). This is the
alternative used in our 1st computation of the Iberian geoid (Sevilla 1994). Tziavos has shown that the
results obtained by using FHT are identical to those obtained by the FFT. To evaluate the planar FHT
we have used the GUNDFHT program (Tziavos 1993a). In the FHT case we have L

N (x,y)=%Y—H"'[AG(u,v)LN(u,v)]

gra

Here H' denotes the inverse Hartley Transform, (x,v) are the frequencies and AG(u,v) and Ly{u,v) are
the Hartley Transforms of Ag(x,y) and Ix{x.y) respectively.
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6.2. 2nd Method: Multi-band Spherical FFT

The multiband spherical FFT approach is a generalization of the Strang van Hees (1990) spherical FFT
geoid prediction method, allowing virtually error-free spherical FFT solution through utilization of
continuously merged "stripes” of transforms.

It is possible to modify the classical spherical Stokes formula so that it may rather well be represented
by a two-dimensional convolution formula, which may be efficiently evaluated by FFT. Stokes formula
my be put in convolution form in (@,A) by using the formula

‘ A AL
2 ¥ _ sin? “_2(3 + sin’ 5 C0sQ p COSP

Sk
where AQ = @ - @,, AL = A - Ay, (@A) are the coordinates of the computation point, and approximating
the cosines product by

A
cos@p cos@ = cos’ @, — sin’ —2([)-

where ©,, is a mean latitude for the area.
With these transformations the Stokes formula becomes a formal convolution integral in ¢ and A with
kernel S(y) and modified data Agcos®, and we can write

N,, = (Agcos@) =S =F " {F (Agcos@)F(S)} (10)

Forsberg and Sideris (1993) proposed to subdivide the area in narrow bands along the longitude
direction. To improve the approximation they use the following expression

COSQ , COSP = COSYP , COS(Y, —AP) — cos® ¢, COSAQP + COSP , SINY , SinAP
P P P (P P P

and thus equation (10) yields an FFT convolution solution for gridded geoid undulations which is an
exact solution of the Stokes' integral for points along the latitude parallel ¢=¢,.
The discrete form of (8) is

RA

M M N
4(P 2 2 S(W)Ag(9;, 1)) cos,
TDY i=l j=1

Ngra((PP’A'P):

where @A denote the coordinates of the data point, Ag, A\ are the grid spacing in latitude and
longitude, M and N are the number of parallels and meridians in the grid. The contribution to N of the
singular point Ag((,,A,), is evaluated separately by (9).

I N, is the FFT geoid solution obtained from (10) using the latitude @,=@; in setting up the kernel S,
the result at a latitude ¢ between two reference latitudes ¢; and @;,; may be obtained through linear
interpolation between the solutions n the neighbouring bands

N

®—9P,, N+ P, —¢

N(o)=
(p) O, — 0, P —Pin

i+1

To evaluate the multiband spherical FFT we have used the SPFOUR program belonging to the
GRAVSOFT package (Tscherning et al., 1994).
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6.3. 3rd Method: 1D-FFT

This method is an exact approach to evaluate the Stokes’ integral on the sphere using 1D-FFT
techniques. Haagmans et al. (1993) note that the Stokes' function values, for a certain longitude
difference between computation and integration points are the same for all computation points on one
parallel, but different for computation points on different parallels. Therefore, only one east-west
convolution is carried out by means of FFT. The north-south integration can be performed by a
pointwise integration. This allows to use a correct kernel function everywhere in the integration area.

The Stokes' formula is written as

RAQAM [ 1
NW(AP)=—74—:Y——¢=¢L§Sm(&)zxg¢(?»)coscpJ . an

were Nypg(Ap) denotes the geoid undulation at all points on the parailel @p. The brackets in (11) contain
1D discrete convolution with respect to A and can be evaluated by the ID-FFT. By the addition theorem
of DFT the evaluation formula can be written in the form

RAGXA
No,o(he) = %F a {(ZF: {Sy JFi{Ag, cosw}}, 9r = Qufar i

where F; and F;” are the 1D Fourier transform operator and its inverse. Through this expression we get
the geoid undulation for all points on one parallel. The results obtained by this method are exactly the
same as those obtained by direct numerical integration. We only need to deal with one 1D complex
array each time resulting in a considerable saving in computer memory as compared to the 2D-FFT
technique (Sideris and She 1995). To evalvate the 1D spherical FFT we have used the FFTGEOID
program (Sideris, 1994). :

7. IBERIAN GEOID 1995

In a first experiment (Sevilla 1994), the gravimetric solution by FHT was performed in two overlapping
areas in the west and east parts of the region. The geoid undulation differences obtained in this common
block are between -2.5 m and 1.5 m. The distribution of the points with differences greater than 1 meter
mainly correspond to the borders of the overlapping area. These differences are kept under 1 meter in an
inner zone limited by the meridians of longitudes -3.7196 and -1.23253 degrees. The good agreement
between the solutions in the central part confirms that many of the differences can be due to the edge
effects. They can also be a result of the poor quality of the topographic model outside the Spanish
territory.

In a second experiment (Sevilla and Rodriguez-Velasco 1994b,) the effect of the extension of the
computation areas on the results obtained by the FHT has been studied, and the canclusion was the need.
of an improved DTM and spherical approximations.

In the final computations, object of this paper, new precise gravity data and a refined DTM are
included in the data used. The geographic limits of geoid calculation in the Therian Peninsular are
35<@<45 for latitudes and -10.5<A<5.5 for longitudes. For geoid calculation 185097 validated free air
anomalies (marine and land data) have been used. For the computations, data were gridded in a
1.19'x1.88" grid for the region, using weighted means with a power equal 3. The result is a grid with
262144 predicted geoid undulations.

The three solutions (a planar and two spherical) are compared and the 1D-FFT solution was accepted
as the IBERIAN GEOID 1995 (Figure 5). Table 4 shows the statistic of the three solutions and their
differences. The maximum and minimum differences between planar and spherical solutions are in the
borders of the area (see also Figures 6 and 7).
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Figure 5. The IBERIAN GEOID 1995 (Contour Interval 0.5 m)

Table 4. Statistics of the IBERIAN GEOID 1995 (m)

Points | Mean | S.D. | Minimum | Maximum | Range
OSU91A model | 262144 | 49.94 | 3.72 36.87 5748 20.61
FHT GEOID 262144 | 4993 | 3.71 36.88 57.67 20.79
2DFFT GEOID | 262144 | 4979 | 3.76 36.83 57.21 20.38
IDFFT GEOID | 262144 | 49.79 | 3.75 36.74 57.16 20.42
FHT-2DFFT 262144 | 0.14 | 047 221 3.37 5.58
FHT-1DFFT 262144 | 0.14 | 045 -2.27 3.19 5.46
2DFFT-1DFFT | 262144 0.00 | 0.07 -0.96 0.72 1.68

45.0

43.0

41.0

39.0 H)

37.0 |

35.0

35.0

43.0 2

41,0 §

§9.0 ¢

37.0 §

Figure 6. FHT-1DFFT Difference

Figure 7. 2DFFT-1DFFT Difference
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8. GPS/LEVELLING.

Unfortunately no accurate GPS/levelling data are available in the Iberian Peninsula, necessary for
making an independent check of the geoid accuracy. A rough check of the geoid is possible in areas with
GPS stations with locally determined sea level heights. One such comparison of a GPS survey is the
EUREF stations (Figure 8) (Gubler and Poder 1992).
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Figure 8. GPS points in the Iberian Peninsula (RETRIG/92)

The 1D-FFT geoid solution achieves a better agreement with the GPS/levelling data available in the
region compared to the FHT and the 2D-FFT geoids, as shown in Table 3.

Table 5. Statistics of the differences between the FFT geoids and the GPS/levelling (in ppm. )

Baselines |Mean |S.D. |Minimum |Maximum | Range
GPS-FHT 157 0.492 [1.009 0.003 4.713 4,710
GPS-2DFFT 157 0.417 0951 0.004 3.849 3.845
GPS-1DFFT 157 0441 ]0.950 0.002 4.256 4.254

Considering the rough topography and the uncertain orthometric heights of GPS stations the fitting can
be considered as satisfactory. The large bias is mainly due to a GPS datum discrepancy.

9. CONCLUSIONS

A gravimetric geoid has been computed from 186813 free air gravity anomalies, a DTM and
geopotential model OSU91A. The area covered is the whole Iberian Peninsula.

Fast Fourier Transform method has been adequate to compute a geoid obtaining 262144 predicted
geoid undulations in a 1.2'x1.8' grid and in the GRS80 reference system.

Different FET solutions have been compared and the 1D-FFT solution has appeared to be the .most
efficient one for geoid undulations computations using discrete spectra for the kernel function and 100
% zero-padding to reduce the effect of circular convolution. Comparisons between 2D-FFT and 1D-FFT
solutions give small differences and between FHT and 1D-FFT results show large differences at the
borders. Comparisons to other previous partial geoids in this area show a good agreement.

The geoidal height mean squares errors estimated from comparison with GPS are almost everywhere
lower than 30 centimeters, and the relative agreement of gravimetric geoid with respect to the
GPS/levelling data results are beter than 1 ppm. Further investigation is needed in order to improve the
topographic model outside Spain and to control the results with external sources as new precise GPS
networks.
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This IBERIAN GEOID 1995 set is the complete high-resolution and high-precision gravimetric geoid
in the Iberian Peninsula which is available on request from the Spanish “Centro Nacional de
Informacidn Geogréfica”. A collection of 20, 2 x4 geoid plots is also available.
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National Geoid Investigations in Switzerland

U. Marti: Swiss Federal Office of Topography, Wabern
B. Biirki, H-G. Kahle: Geodesy and Geodyramics Laboratory,
Swiss Federal Institute of Technology, Zurich

Abstract

The task of the new geoid and quasigeoid computation in Switzerland is realised in a jomt
project of the Swiss Federal Institute of Technology (ETH) Zurich, the Federal Office of
Topography (L+T), Wabern and the Astronomical Institute of the University of Berne (ATUB).
The main objective is to calculate a geoid and a quasigeoid with an accuracy of better than a
few centimetres over the whole country (200 km x 300 km), which is not only useful for
combining levelling data with GPS-derived ellipsoidal heights but also for many other purposes
such as positioning and height determination using GPS techniques.

This is realised by a combined evaluation of all available data of the gravity field such as
deflections of the vertical, gravity values and GPS levelling. In the mountainous region of
Switzerland much attention has to be given to the reduction of the observed values by means
* of a high resohition digital terrain model. After the subtraction of further mass models such as
the Moho-depth and the Ivrea-body the residuals are interpolated by means of multivariate
collocation methods.

1. Observations

Since 1990 about 100 astrogeodetic stations have been observed with the transportable zenith
camera system of the ETH Zurich for the geoid determination. All these observations and the
older observations back to 1980 had been re-evaluated using the PPM star catalogue which is
consistent with the ICRS Reference system at the level of the needed accuracy. There are now
about 300 stations with 600 components of the deflection of the vertical in a homogeneous
system available. Some additional 300 stations are available in other reference systems.
Comparisons revealed that with a few exceptions there are no significant differences of the
astronomical coordinates of these stations. Therefore the complete data set consists of 600
astrogeodetic observations which can be used for the geoid computation. Their distribution
and the observed deflections of the vertical can be seen in fig. 1.

The observation of the GPS base-network (LV95) of Switzerland had been completed in 1993.
This 3D reference network consists of 104 control points, including 5 EUREF stations. 30 of
these stations are connected to the first order levelling network of Switzerland and therefore
can be used for the geoid determination. A preliminary evaluation shows that the observed
ellipsoidal heights have an accuracy of about 5 cm. This is not adequate for a geoid
determination at the 1 cm level. Therefore these observations at the moment are only used to
control long wavelength drifts. An other problem in using GPS is the fact that the first order
levelling network of Switzerland had never been adjusted rigorously and so in many regions
only approximate orthometric heights are available. This fact will be corrected in a special
project LN95. But its results will not be available before 1999,

The third data set used for the determination of the geoid are about 2500 gravity stations. Not
included in this number are the measurements which had been performed along the first order
levelling lines and the many data with access restrictions. The gravity values are mainly used in
regions with only few astrogeodetic observations and along the borders. They are of special
interest for the definition of the new national height system LN95.
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Fig. 1: Astrogeodetic stations of Switzerland with observed deflections of the vertical

2. Mass Models and Reduction of the Observations

The main purpose of introducing mass models is to smoothen the gravity field information for
interpolation and if we want to determine the geoid (not quasigeoid) also to continue the
gravity vectors from the earth's surface down to sea level.

The most important model is certainly the topography. It is most responsible for short
wavelength changes of the gravity field. Until now a digital height model (DHM) with a
resolution of 250 meters (RIMINI) had been used for the reduction of gravity field
information. Since 1990 the Swiss Federal Office of Topography (L+T) is digitising its
1:25000 maps and generates a DHM with a resolution of 25 meters (DHM25). This work will
be completed in early 1996. For the calculations presented in this paper about 85% of DHM2.5
was available. Data are still missing in the south-eastern part of Switzerland. The comparison
of calculating the topographic effect once with RIMINI and once with DHM25 revealed
differences of up to 9 mgal for the gravity or up to 2" for the deflections of the vertical,
respectively. This shows the importance of a high resolution DHM.

DHM?25 does not include any information about density anomalies. They have to be mtroduced
in separate models where necessary. Our 2 dimensional approach to model surface densities is,
to form closed polygons and to calculate the topographic effect in the enclosed areas with
another than the standard density. Figure 2 shows the 3 different kinds of polygons we
introduced in our software: Type 1 is used for modelling the effects of the water masses of the
lakes. It is formed by the lake's contours and must be characterised by its elevation. A
prerequisite to use these models is, that the lake's ground and not the surface is included in the
DHM. At the moment this is not the case for DHM25 but it will be available in 1996. The 2nd
kind of polygons which is characterised by a density and a constant thickness of the geological

structure is used to model glaciers and some sedimental basins where no better information is
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available. The 3rd kind is used for the near surface parts of larger structures like the sediments
of the Po-plain or the Ivrea zone. Their deeper parts are treated in separate models.

Topography

Sea-Level

Fig. 2: Treating of near surface density anomalies in the calculation of the topographic effect

The effects of deeper geological structures are calculated separately. These models are gither
formed by a grid of vertical prisms (for instance depth of the Moho) or by irregularly shaped
polyeders (for instance Ivrea zone).

The effect of reducing the gravity field measurements by the influence of the models described
above (Topography, Moho, Po-plain) can be seen in figure 3 with the example of the
deflections of the vertical. The remaining residuals are smooth and can mainly be interpreted as
a general trend which we modelled with a polynomial of degree 3. This trend has not been
investigated intensively but it seems to be most likely an effect of windowing the models of the
topography and of the Moho-discontinuity. Therefore we neglect completely the effects of the
masses beyond the boundaries of our models. A hint for this assumption can be found
[Geiger et al., 1992] where ‘far masses' generate even stronger trend effects. After removing
the trend we obtain the residuals of figure 4. Besides of measuring noise, they show systematic
signals which can be interpolated by means of multivariate collocation methods.
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Fig. 3: Residuals of the deflections of the vertical afier removing the influences of
topography, Mqho discontinuity, Ivrea zone and sediments of the Po-plain.
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Fig. 4: Residuals of the deflections of the vertical after removing the influences of mass
models and a trend of degree 3.
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3. Tests of the variance-covariance functions

The result of an interpolation by means of collocation is dependent on the used variance-
covariance fimctions between the measurements. In our tests, 2 different variance-covariance
models have been compared 2-dimensionally as well as 3-dimensionally:

1. An inverse distance model (1/;), as it was used in local geoid determinations in Switzerland
[Wixth, 1990].

2. The 2-dimensional 3rd Order Markov-Medel as proposed by Jordan, 1972 and applied in
the last national geoid determination {Gurtner, 1978].

The graphs of the tested correlation-functions (Fig. 5) show that the 1/-model is very similar
to the 3rd Order Markov model. Its advantage is its much faster computation because of the
simplicity of the formulas. The basic fimction is the auto-covariance function between the
geoid undulations N, which for the 3rd order Markov model has the form

2

¥ r -
Oy ()= oh I+ T+ e 7
and for the 1/,-model
1
® o (r) = 0% (———)
;—24—1

In case of the 2-dimensional approach r is the horizontal distance between the stations,
whereas for the 3-dimensional approach it is a function of the horizontal distance and the
height difference between the stations. Both functions contain 2 parameters o2 and d, which
are determined empirically. The characteristical distance d depends on the density of the
observations and on the degree of smoothness of the residuals. As it can be seen in Figure 5,
where a value of 1 on the horizontal axis corresponds to d, the characteristical distance of the
1/ -model will be about double the value of the characteristical distance of the 3rd order
Markov-model. The parameter o2, which in collocation is the variance of the signal, has no
effect on the geoid calculation itself, but behaves like a scale factor for the calculated a priori
errors. It corresponds in general to the mean remaining residuals after removing a trend
finction and after centring the residuals to a value of 0.

For the 3-dimensional approach there is in principle a third parameter which increases
artificially the distance r between two stations which do not have the same altitude.

All other auto-covariance and cross-covariance finctions are then given by the well-known
relations between geoid undulations, deflections of the vertical and gravity values (Stokes,
Vening-Meinesz, differential relations)

Soon it was realised that the 3-dimensional approach is difficult to handle correctly because the
distribution of the gravity field measurements is more or less 2-dimensional. Even i local
investigations of areas where we have gravity measurements on mountains as well as in tunnels
undemeath it was not possible to generate a collocation model that results i a realistic
downward continuation [Marti, 1995]. How much airborme gravity data can help to solve this
problem has to be tested yet. Therefore we compared only the solutions of the 2-dimensional
approaches.

As seen in figure 6 the differences are in general less than 2 cm. Only in the south-west we
obtain significantly larger differences of up to 6 cm because of a poor distribution of the
gravity field information. So we can conclude that the two models are equivalent and give
more or less the same results.
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Fig. 6: Differences of a geoid computation with the 3rd order Markov model and the 1/t
model

4. A priori Calculations and Comparison of different solutions

Regarding the a priori errors the 2 compared variance-covariance functions are equivalent.
Therefore in this chapter we do not have to distinguish between the two models. The a priori
calculations for the accuracy of the astrogeodetic geoid determination relative to the SLR-
station in Zimmerwald is displayed in fiz. 7. The results showed that in most parts of
Switzerland an accuracy of better than 4 cm relative to the SLR-station in Zimmerwald can be
reached by using only the astrogeodetic information. The greatest a priori errors of about 6 cm
occur in the vicinity of Geneva and in some valleys of the south-east.

In a first test we eliminated about 50% of the astrogeodetic observations and calculated a new
solution for the geoid and the formal errors. The a priori errors increased now to a value of 6
cm in most parts of Switzerland and to maximal values of 9 cm in the region of Geneva. The
effect on the geoid undulations (after applying a shift), shown in figure 8, is in general less than
4 cm. This indicates that only with astrogeodetic observations it is possible to determine the
geoid on a level of a few centimetres.

We also calculated the formal errors of a pure gravimetric geoid solution (Figure 9). Also here
we can see that in most parts they are better than 4 cm. But if we compare the 1 cm isolines of
figure 7 and 9 we see that gravity values help considerably in increasing locally the accuracy of
the solution.

A good method to control long wavelength errors of the geoid is to introduce GPS levelling
into the calculations. Only 7 additional GPS levelling stations (with a mean error of 2 cm)
increase the relative accuracy of the geoid to a level of better than 3 cm everywhere m
Switzerland. But at the moment there are still problems including these data in the evaluation
process which are mentioned earlier in this paper.
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Fig. 7: - Formal error of the astrogeodetic geoid referred to Zimmerwald (600000 / 190000).
The greatest error (>5 cm) occurs near Geneva at the SW-edge of Switzerland.
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Fig. 8: Differences of the astrogeodetic geoid by using the complete data set or only a
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Fig. 9: Formal error of the gravimetric geoid

5. Calculation of the Geoid and Quasigeoid

The geoid is obtained by adding the effects of the reduced mass models (Bruns theorem) on
sea level to the cogeoid obtained by collocation. In this case the assumptions we made on the
distribution of the densities in the interior of the earth is important. We can avoid this problem
by calculating a quasigeoid where these assumptions are of no importance. The resulting
differences between the geoid and the quasigeoid (and thercfore also between orthometric
heights and normal heights) can reach up to 60 cm in the region of the highest mountains in
southern Switzerland.

The geoid which is displayed in fig. 10 was calculated with only the astrogeodetic data in the
Swiss geodetic datum CH1903 and the inverse distance collocation model. The assumption
was, that CH1903 is parallel to the ITRS system. This is not strictly fulfilled. Therefore it is
possible that the presented solution has a long wavelength trend which could be determined by
introducing GPS levelling data or to fit our solution to a global geoid model.

The presented solution has been calculated with a resolution of 5 km. Detailed structures,
especially the main valleys are clearly visible. The effect of the Ivrea zone which causes geoid
undulations of up to 10 meters is masked by the large effect of the Po plain and therefore it can
not be seen easily on the plot.

It is possible to transform this solution to the new Swiss reference system CH1903+ and the
European datum ETRS89. With our software it is also possible to interpolate deflections of the
vertical with an accuracy of better than 1" and gravity values with an accuracy in the order of 1
mgal.
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Fig. 10: Astrogeodetic geoid in Swiss datum CH1903
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